Synthesis and Aqueous Dispersion of Monodisperse Magnetic Fe3O4 Nanoparticles

Article Preview

Abstract:

Iron oxide (Fe3O4) nanoparticles as one of the most important nanomaterials are suitable for many applications. Monodisperse magnetic Fe3O4 nanoparticles were synthesized by the thermal decomposition of the iron oleate precursor in octadecene (ODE). The iron oleate complex was prepared by reaction between sodium oleic and FeCl3·6H2O at low temperature. The Fe3O4 nanoparticles were transferred from organic solvent into water by amphiphilic copolymer. The aqueous dispersion of Fe3O4 nanoparticles was stable in water and physiological buffers. This method with low cost can be used to prepare large scale of aqueous dispersion of Fe3O4 nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-337

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Koh, J.A. Seo, J.T. Park, J.H. Kim: J. Colloid Interface Sci Vol. 338 (2009), p.486.

Google Scholar

[2] M. Husein, E. Rodil, J. Vera: Langmuir Vol. 19 (2003), p.8467.

Google Scholar

[3] D.S. Tang, S.S. Xie, Z.W. Pan: Chem. Phys. Lett Vol. 356 (2002), p.563.

Google Scholar

[4] A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton: J. Phys. D: Appl. Phys Vol. 35 (2002), P. 157.

DOI: 10.1088/0022-3727/35/19/201

Google Scholar

[5] S. Bucak, D.A. Jones, P.E. Laibinis, T.A. Hatton: Biotechnol. Prog Vol. 19 (2003), P. 477.

Google Scholar

[6] M. Shinkai, A Ito: Adv. Biochem. Eng. Biotechnol Vol. 91 (2004), p.191.

Google Scholar

[7] H. Yun, B.H. Sohn, J.C. Jung: Langmuir Vol. 21 (2005), p.6548.

Google Scholar

[8] C. Yang, J.J. Wu, Y.L. Hou: Chem. Commun Vol. 47 (2011), p.5130.

Google Scholar

[9] S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu, L. Xu: Solid State Commun Vol. 129 (2004), p.485.

Google Scholar

[10] Z.H. Zhou, J. Wang, X. Liu: J. Mater. Chem Vol. 11 (2001), p.1704.

Google Scholar

[11] Z. Li, Q. Sun, M. Gao: Angew. Chem. Int. Ed Vol. 44 (2005), p.123.

Google Scholar

[12] B. Kalska, J.J. Paggel, P. Fumagalli, J. Rybczynski, D. Satula, M. Hilgendorff, M. Giersig: J. Appl. Phys Vol. 95 (2004), p.1343.

DOI: 10.1063/1.1637134

Google Scholar

[13] J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon: Nature Mater Vol. 3 (2004), p.891.

DOI: 10.1038/nmat1251

Google Scholar

[14] D. Wang, Q. Ma, P. Yang: J. Nanosci. Nanotech Vol. 12 (2012), p.6432.

Google Scholar

[15] W.W. Yu, E. Chang, C.M. Sayes, R. Drezek, V.L. Colvin: Nanotechnology Vol. 17 (2006), p.4483.

Google Scholar