Design and Controllable Synthesis of Starch-Derived Magnetic Carbon Spheres with Hierarchical Pore Structure

Article Preview

Abstract:

Magnetic carbon spheres (MCSs) with hierarchical pore structure were designed and controllably synthesized using corn starch as carbon source and iron nitrate as metal source by a combined procedure of enzymolysis, pre-oxidation and catalytic carbonization. The results show that after enzymolysis, the porous starch precursor inherits the morphology of original starch with round shape and has a number of honeycomb-like pores of ca.1 μm on the outside surface. It has been found that the MCSs materials with hierarchical porous structure can be synthesized only from the pre-oxidized porous starch by the catalytic carbonization technique, evidenced that the pre-oxidation of carbon source is a dominating factor governing the formation of MCs with hierarchical pore structure. Compared with the porous starch, the pores on the surface of the MCSs shrink slightly and vary in a range of 0.3-0.6 μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-104

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Subramoney, Adv. Mater. 10 (1998) 1157-+.

Google Scholar

[2] S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick and D. Thompsett, Angew. Chem. Int. Ed. 43 (2004) 5645-5649.

DOI: 10.1002/anie.200460552

Google Scholar

[3] F.E. Kruis and H. Fissan, A. Peled, J. Aerosol. Sci. 29 (1998) 511-535.

Google Scholar

[4] A.H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer and F. Schuth, Angew. Chem. Int. Ed. 43 (2004) 4303-4306.

DOI: 10.1002/anie.200454222

Google Scholar

[5] J. Xue, H.K. Xiang, K.P. Wang, X.R. Zhang, S.J. Wang, X.H. Wang and H. Cao, J. Mater. Sci. 47 (2012) 1737-1744.

Google Scholar

[6] H.Q. Sun, G.L. Zhou, S.Z. Liu, H.M. Ang, M.O. Tadé and S.B. Wang, ACS Appl. Mater. Interfaces (2012).

Google Scholar

[7] H.Y. Niu, Y.X. Wang, X.L. Zhang, Z.F. Meng and Y.Q. Cai, ACS Appl. Mater. Interfaces 4 (2012) 286-295.

Google Scholar

[8] S.J. Lee, J.H. Cho, C. Lee, J. Cho, Y.R. Kim and J.K. Park, Nanotechnology 22 (2011) 375603.

Google Scholar

[9] W.Z. Shen, X.P. Yang, Q.J. Guo, Y.H. Liu, Y.R. Song, Z.X. Han, Q.L. Sun and J. Cheng, Mater. Lett. 60 (2006) 3517-3521.

Google Scholar

[10] Q.Y. Li, H.Q. Wang, Q.F. Dai, J.H. Yang and Y.L. Zhong, Solid State Ion. 179 (2008) 269-273.

Google Scholar

[11] V.L. Budarin, J.H. Clark, R. Luque and D.J. Macquarrie, Chem. Commun. (2007) 634-636.

Google Scholar

[12] V. Budarin, J.H. Clark, J.J.E. Hardy, R. Luque, K. Milkowski, S.J. Tavener and A.J. Wilson, Angew. Chem. Int. Ed. 45 (2006) 3782-3786.

DOI: 10.1002/anie.200600460

Google Scholar

[13] C. Yu and J.S. Qiu, Chem. Eng. Res. Des. 86 (2008) 904-908.

Google Scholar

[14] C.Y. Wang, S. Zhao, M.M. Chen, J.H. Sun, Carbon 47 (2009) 331-333.

Google Scholar

[15] R. Hoover and L. Jayakody, Carbohydr. Polym. 74 (2008) 691-703.

Google Scholar

[16] H. Jacobs, N. Mischenko, M.H.J. Koch, R.C. Eerlingen, J.A. Delcour and H. Reynaers, Carbohydr. Res. 306 (1998) 1-10.

Google Scholar

[17] G. Lewandowicz, J. Fornal and A. Walkowski, Carbohydr. Polym. 34 (1997) 213-220.

Google Scholar

[18] Q.Y. Li, H.Q. Wang, Q.F. Dai, J.H. Yang, X.X. Zhong, Y.G. Huang, A.N. Zhang and Z.X. Yan, Solid State Ion. 180 (2009) 1429-1432.

Google Scholar

[19] S. Zhao, C.Y. Wang, M.M. Chen and Z.Q. Shi, Mater. Lett. 62 (2008) 3322-3324.

Google Scholar