Molecular Dynamics Simulation of Structural Changes of Ag965 Clusters during Freezing

Article Preview

Abstract:

The structural transitions of Ag965 clusters during two different quenching processes (Q1:1.0×1014 K/s, Q2: 1.0×1012 K/s) were studied using molecular dynamics simulations. This work gives the structure properties including the variations with temperature of pair-correlation function, bond-angle distribution function, bond pairs and bond orientational order parameters in both rapid quenching processes. Our results indicated that the liquid Ag965 was frozen into amorphous structure at 100 K under the quenching condition Q1. While the liquid Ag965 transformed to hexagonal close-packed (hcp) phase at the temperature 100 K under the quenching condition Q2.These instructions give you basic guidelines for preparing papers for conference proceedings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

348-352

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. S. Barnard and L. A. Curtiss, it Rev. Adv. Mater. Sci. 10 (2005) 105.

Google Scholar

[2] J. S. Sao, S. Giorgio, J. M. Penisson, C. Chapon, S. Bourgeois and C. Henry, J. Phys. Chem. B109 (2005) 342.

Google Scholar

[3] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber Nano Lett. 4 (2004) 433.

Google Scholar

[4] H. B. Liu, J. A. Ascencio, M. P. Alvarez, M. J. Yacaman, Surf. Sci. 491 (2001) 88.

Google Scholar

[5] G. J. Li, Q. Wang, D. G. Li, X. L and J. C. He Mater. Chem. Phys. 114 (2009) 746.

Google Scholar

[6] Y. G. Chushak, L.S. Bartell, J. Phys. Chem. B 105 (2001) 11605.

Google Scholar

[7] S. P. Huang and P. B. Balbuena, J. Phys. Chem. 106 (2002) 7225.

Google Scholar

[8] S. K. R. S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Phys. Rev. B 71 (2005) 195415.

Google Scholar

[9] D. H. Kim, H. Y. Kim, H. G. Kim, J. H. Ryu and H. M. Lee, J. Phys.: Condens. Matter 20 (2008) 035208.

Google Scholar

[10] F. Baletto, C. Mottet and R. Ferrando, Phys. Rev. B 66 (2002) 155420.

Google Scholar

[11] F. Baletto, C. Mottet and R. Ferrando, Phys. Rev. Lett. 90 (2003) 135504.

Google Scholar

[12] H. Y. Kim, H. G. Kim , J. H. Ryu and H. M. Lee, Phys. Rev. B 75 (2007) 212105.

Google Scholar

[13] M. S. Daw, and M. I. Baskes, Phys. Rev. Lett. 50 (1983) 1285.

Google Scholar

[14] M. S. Daw, S. M. Foiles and M. I. Baskes, Mater. Sci. Rep. 9 (1993) 251.

Google Scholar

[15] J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91 (1987) 4950.

Google Scholar

[16] F. C. Frank, Proc. R. Soc. A 215} (1952)43.

Google Scholar

[17] D. R. Nelson, J. Toner, Phys. Rev. B 24}(1981)363.

Google Scholar

[18] P. J. Steinhardt, D. R. Nelson, M. Ronchetti, Phys. Rev. B 28 (1983)784.

Google Scholar

[19] N. Mattern, A. SchÖps, U. Khn, J. Acker, O. Khvostikova, and J. Eckert, J. Non-Cryst. Solids 354 (2008) 1054.

DOI: 10.1016/j.jnoncrysol.2007.08.035

Google Scholar

[20] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson,N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly, Acta Mater. 49(2001) 4005.

DOI: 10.1016/s1359-6454(01)00287-7

Google Scholar

[21] F. F. Ambraham, J. Chem. Phys. 72 (1980) 359.

Google Scholar

[22] A. Inoue, ActaMater. 48 (2000) 279.

Google Scholar

[23] G. Shao, J. Appl. Phys. 88ü} (2000) 444.

Google Scholar