Preparation of SnO2 Powders by Modified Polyol Synthesis Using 1,2-Propanediol and Calcination

Article Preview

Abstract:

SnO2 powders were prepared using a modified polyol synthesis method and subsequent calcinations. Well-dispersed spherical 2SnO∙(H2O) particles could be synthesized at room temperature through the modified polyol method using tin (II) 2-ethylhexanoate as the precusor, 1,2-propanediol as the solvent, PVP as the capping agent, and sodium borohydride as the reducing agent. The 2SnO∙(H2O) nanoparticles agglomerated to form larger particles during the drying step, and most of these larger nanoparticles coalesced with one another. Finally, these 2SnO∙(H2O) nanoparticles were successfully transformed into the SnO2 phase by calcination for 1 h at 500 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-67

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Yamazoe: Sensor. Actuator. B Vol. 5 (1991), p.7

Google Scholar

[2] A. Gurlo, M. Ivanovshaya, N. Barsan, M. Schweizer-Berberich, U. Weimar, W. Gopal and A. Dieguez: Sensor. Actuator. B Vol. 44 (1997), p.327

Google Scholar

[3] A. Cirera, A. Vila, A. Dieguez, A. Cabot, A. Cornet and J.R. Morante: Sensor. Actuator. B Vol. 64 (2000), p.65

Google Scholar

[4] R. Ramamoorthy, M.K. Kennedy, H. Nienhaus, A. Lorke, F.E. Kruis and H. Fissan: Sensor. Actuator. B Vol. 88 (2003), p.281

DOI: 10.1016/s0925-4005(02)00370-2

Google Scholar

[5] M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi: J. Phys. D: Appl. Phys. Vol. 37 (2004), p.1248

Google Scholar

[6] J. Morales, V.C. Perez, S. Santos and L.J. Tirado: J. Electrochem. Soc. Vol. 143 (1996), p.2847

Google Scholar

[7] M.V. Artemyev, V. Sperling and U. Woggon: J. Appl. Phys. 81 (1997), p.6975

Google Scholar

[8] M.C. Schlamp, X. Peng and A.P. Alivisatos: J. Appl. Phys. 82 (1997), p.5837

Google Scholar

[9] D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski and A. Gedanken: Chem. Mater. Vol. 14 (2002), p.4155

DOI: 10.1021/cm021137m

Google Scholar

[10] Y.-N. Nuli, S.-L. Zhao and Q.-Z. Qin: J. Power Sources, Vol. 114 (2003), p.113

Google Scholar

[11] M. Miyauchi, A. Nakajima, T. Watanable and K. Hashimoto: Chem. Mater. Vol. 14 (2002), p.2812

Google Scholar

[12] L.B. Fraigi, D.G. Lamas and N.E. Walsoe de Reea: Mater. Lett. Vol. 47 (2001), p.262

Google Scholar

[13] K.C. Song and J.H. Kim: Powder Technol. Vol. 107 (2000), p.268

Google Scholar

[14] H. Zhaohui, G. Neng, L. Fanqing, Z. Wanqun, Z. Huaquiao and Q. Yitai: Mater. Lett. Vol. 48 (2001), p.99

Google Scholar

[15] N.S. Baick, G. Sakai, N. Miura and N. Yamozoe: Sensor. Actuator. B Vol. 3 (2000), p.4

Google Scholar

[16] L.H. Xian, Y.-J. Zhu and S.-W. Wang: Mater. Chem. Phys. Vol. 88 (2004), p.421

Google Scholar

[17] T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal and R. Jayaprakash: Mater. Lett. Vol. 62 (2008), p.3437

Google Scholar

[18] D. Briand, M Labeau, J.F. Curie and G. Delabouglise: Sensor. Actuator. B Vol. 48 (1988), p.395

Google Scholar

[19] S.-C. Lee, J.-H Lee, T.-S Oh and Y.-H. Kim: Sol. Energy Mater. Sol. Cells Vol. 75 (2003) p.481

Google Scholar

[20] S.-S. Chee and J.-H. Lee: Electron. Mater. Lett. Vol. 8 (2012), p.53

Google Scholar

[21] S.-S. Chee and J.-H. Lee: Accepted in Electron. Mater. Lett.

Google Scholar