Transport and Morphological Properties of Gel Polymer Electrolytes Containing Mg(CF3SO3)2

Article Preview

Abstract:

Magnesium-ion conducting gel polymer electrolytes (GPEs) based on PMMA with ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent were prepared via the solution casting technique. Mg(CF3SO3)2 salt was used as source of magnesium ions, Mg2+. The variation of conductivity with salt concentrations, from 5 wt.% to 30 wt.% was studied. The gel polymer electrolyte with composition 20 wt.% of Mg(CF3SO3)2 exhibited the highest conductivity of 1.27 x 10-3 S cm-1 at room temperature. The conductivity-temperature dependence of gel polymer electrolyte films obeys Arrhenius behaviour with activation energy in the range of 0.18 eV to 0.26 eV. Ionic transport number was evaluated using DC polarization technique and it reveals the conducting species are predominantly ions. It is found that the ionic conductivity and transport properties of the prepared GPEs are consistent with the X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359–367.

DOI: 10.1038/35104644

Google Scholar

[2] O. Chusid, Y. Gofer, H. Gizbar, Y. Vestfrid, E. Levi, D. Aurbach and I. Riech, Solid-state rechargeable magnesium battery, Adv. Mater. 15 (2003) 627-630.

DOI: 10.1002/adma.200304415

Google Scholar

[3] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman,Y. Cohen, M. Moshkovich and E. Levi, Prototype systems for rechargeable magnesium batteries, Nature 407 (2000) 724.

DOI: 10.1038/35037553

Google Scholar

[4] P. Novak, R. Imhof and O. Haas, Magnesium insertion electrodes for rechargeable nonaqueous batteries- a competitive alternative to lithium, Electrochim. Acta 45 (1999) 351-367.

DOI: 10.1016/s0013-4686(99)00216-9

Google Scholar

[5] J.S. Oh, J.M. Ko, and D.W. Kim, Preparation and characterization of gel polymer electrolytes for solid sate magnesium batteries, Electrochim. Acta 50 (2004) 903-906.

DOI: 10.1016/j.electacta.2004.01.099

Google Scholar

[6] G. P Pandey, R.C. Agrawal, and S.A. Hashmi, Electrical and electrochemical properties of magnesium ion conducting composite gel polymer electrolytes, J. Phys. D: Appl. Phys. 43 (2010) 255501.

DOI: 10.1088/0022-3727/43/25/255501

Google Scholar

[7] M. Watanabe, M. Kanba, K. Nagaoka and I. Shinohara, Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4, J. Polym. Sci. Phys. Ed. 21 (1983) 939-948.

DOI: 10.1002/pol.1983.180210610

Google Scholar

[8] R. Koksbang, I.I. Olsen and D. Shackle, Review of hybrid polymer electrolytes and rechargeable lithium batteries, Solid State Ionics 69 (1994) 320-335.

DOI: 10.1016/0167-2738(94)90420-0

Google Scholar

[9] J.Y. Song, Y.Y. Yang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources 77 (1999) 183-197.

DOI: 10.1016/s0378-7753(98)00193-1

Google Scholar

[10] S. Ramesh, C.W. Liew, and K. Ramesh, Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes, J. Non-Cryst. Solids 357 (2011) 2132-2138.

DOI: 10.1016/j.jnoncrysol.2011.03.004

Google Scholar

[11] R. Kumara, A. Subramania, N.T. K Sundaram, G. V Kumar, I. Baskaran, Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte, J. Membr. Sci. 300 (2007) 104-110.

DOI: 10.1016/j.memsci.2008.04.048

Google Scholar

[12] G.G. Kumar, N. Munichandraiah, Poly(methylmethacrylate)-magnesium triflate gel polymer electrolyte for solid state magnesium battery application, Electrochim. Acta 47 (2002) 1013-1022.

DOI: 10.1016/s0013-4686(01)00832-5

Google Scholar

[13] S.N. Asmara, M.Z. Kufian, S.R. Majid, A.K. Arof, Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors Electrochim. Acta 57 (2011) 91-97.

DOI: 10.1016/j.electacta.2011.06.045

Google Scholar

[14] G.P. Pandey, R.C. Agrawal, S.A. Hashmi, Experimental investigation of an ionic-liquid-based, magnesium ion conducting polymer gel electrolyte, J. Power Sources 190 (2009) 563-572.

DOI: 10.1016/j.jpowsour.2009.01.057

Google Scholar

[15] S. Ganesan, B. Muthuraaman, V. Mathew, J. Madhavan, P. Maruthamuthu, S. Austin Sunthanthiraraj, Performance of a new polymer electrolyte with diphenylamine in nanocrystalline dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 92 (2008).

DOI: 10.1016/j.solmat.2008.08.004

Google Scholar

[16] S. Ramesh, Chiam-Wen Liew, Ezra Morris and R. Durairaj, Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA PVC blend-based polymer electrolytes, Thermochimica Acta 511 (2010).

DOI: 10.1016/j.tca.2010.08.005

Google Scholar