Physical Properties of the Amorphous Silica Encapsulated Fluorescence Dye

Article Preview

Abstract:

Amorphous nanosilica entrapped fluorescence dye intended to be used as tracing agent for imaging of cell or tissue in human cell was prepared using micelle entrapment approach. Micelles were produced by mixing a surfactant in water with additives such as butanol and ammonia in a preheated bioreactor. Then, 1,1%-dioctadecyl-3,3,3%,3% tetramethylindocarbocyanine perchlorate (DiI) dye tracing agent was added into the mixture followed by the addition of silica precursor. The parameters studied including effect of surfactant amount, effect of temperature and amount of Si precursor. Silica encapsulated DiI produced were then characterized using Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and UV-Vis NIR spectrophotometer. Dynamic light scattering (DLS) showed that tunable size of nanoparticles in the range of 30-150 nm can be produced by varying synthesis parameters. The results showed that the silica encapsulated DiI became bigger and uniform in size with the increase of temperature and amount of surfactant. The silica encapsulated with DiI is photostable which the intensity of fluorescence value is 279.12 after 90 minutes exposure to halogen lamp (200W) compared to bare DiI that degraded to 100.61.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-289

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Miletto, A. Gilardino, P. Zamburlin, S. Dalmazzo, D. Lovisolo, G. Caputo, G. Viscardi, G. Martra, Dyes and Pigments 84 (2010) 121-127.

DOI: 10.1016/j.dyepig.2009.07.004

Google Scholar

[2] I. Texier, M. Goutayer, A. Da Silva, L. Guyon, N. Djaker, V. Josserand, E. Neumann, J. Bibette, F. Vinet, Journal of Biomedical Optics 14 (2009) 054005.

DOI: 10.1117/1.3213606

Google Scholar

[3] G. Chen, F. Song, X. Wang, S. Sun, J. Fan, X. Peng, Dyes and Pigments 93 (2012) 1532-1537.

Google Scholar

[4] J.R. Carreon, K.M. Stewart, K.P. Mahon, S. Shin, S.O. Kelley, Bioorganic & Medicinal Chemistry Letters 17 (2007) 5182-5.

DOI: 10.1016/j.bmcl.2007.06.097

Google Scholar

[5] M. -P. Kung, C. Hou, Z. -P. Zhuang, D. Skovronsky, H.F. Kung, Brain Research 1025 (2004) 98-105.

DOI: 10.1016/j.brainres.2004.08.004

Google Scholar

[6] L. Albarran, T. López, P. Quintana, V. Chagoya, Colloids and Surfaces A: Physicochemical and Engineering Aspects 384 (2011) 131-136.

DOI: 10.1016/j.colsurfa.2011.03.042

Google Scholar

[7] Y.H. Han, H.W.A.J.I.N. Moon, B.O.R.A. You, S.Z.O.O. Kim, S.H.E.E. Kim, W.O.O.H. Park, 3844 (2009) 3837-3844.

Google Scholar

[8] A.I. Omar, V.V. Senatorov, B. Hu, 102 (2001) 353-359.

Google Scholar

[9] Y. Li, Y. Yao, Z. Sheng, Y. Yang, G. Ma, International Journal of Nanomedicine 6 (2011) 815-23.

Google Scholar

[10] D.K. Chelvanayagam, L.D. Beazley, Journal of Neuroscience Methods 72 (1997) 49-55.

Google Scholar

[11] M.H. Hofmann, H. Bleckmann, Journal of Neuroscience Methods 88 (1999) 27-31.

Google Scholar

[12] N. Li, H. Yang, L. Lu, C. Duan, C. Zhao, H. Zhao, Brain Research 1215 (2008) 11-9.

Google Scholar

[13] P. Lu, Y. -L. Hsieh, Powder Technology 225 (2012) 149-155.

Google Scholar

[14] E. Colloids, E. Aspects, C. Engineering, (1998).

Google Scholar

[15] K. -H. Kang, H. -U. Kim, K. -H. Lim, Colloids and Surfaces A: Physicochemical and Engineering Aspects 189 (2001) 113-121.

Google Scholar

[16] M.S. Akhter, S.M. Alawi, Colloids and Surfaces A: Physicochemical and Engineering Aspects 175 (2000) 311-320.

DOI: 10.1016/s0927-7757(00)00671-3

Google Scholar

[17] H. Wanyika, E. Gatebe, P. Kioni, Z. Tang, Y. Gao, African Journal of Pharmacy and Pharmacology 5 (2011) 2402-2410.

Google Scholar

[18] I.A. Rahman, V. Padavettan, Journal of Nanomaterials 2012 (2012) 1-15.

Google Scholar