Microstructure Evolution and Grain Boundary Characteristics of Oriented Silicon Steel during Primary Recrystallization in a Pulsed Magnetic Field

Article Preview

Abstract:

The effects of a 2 T pulsed magnetic field primary annealing process on microstructure evolution and grain boundary characteristics in two-stage cold-rolled silicon steel were examined. Pulsed magnetic annealing increased grain size through the application of relatively smaller intensity of magnetic fields (2 T), compared to steady magnetic annealing. The effect of increasing grain size may be attributed to the magnetic acceleration effect of boundary motion under magnetic pulse conditions. Pulsed magnetic annealing may serve to enhance the relative intensity of the {111} component and decrease the frequency of low-angle misorientations. Repeated magnetostriction induced by pulsed magnetic field applications may accelerate overall dislocation motion. These findings suggest that pulsed magnetic fields require relatively lower intensities than steady magnetic fields to achieve superior results, providing a potentially viable alternative for industrial annealing processes for electrical steels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

139-146

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Xia, Y. Kang and Q. Wang: J. Magn. Magn. Mater. Vol. 320(2008), p.3229.

Google Scholar

[2] M. Matsuo: ISIJ Int. Vol. 29(1989), p.809.

Google Scholar

[3] C. Gheorghies and A. Doniga: J. Iron Steel Res. Int. Vol. 16(2009), p.78.

Google Scholar

[4] J.E. May and D. Turnbull: Trans. Metall. Soc. Vol. AIME 212(1958), p.769.

Google Scholar

[5] J.Y. Park, K.S. Han, J.S. Woo, S.K. Chang, N. Rajmohan and J.A. Szpunar: Acta Mater. Vol. 50(2002), p.1825.

Google Scholar

[6] T. Kumano, T. Haratani and Y. Ushigami: ISIJ Int. Vol. 42(2002), p.440.

Google Scholar

[7] Y. Hayakawa and M. Kurosawa: Acta Mater. Vol. 50(2002), p.4527.

Google Scholar

[8] H.O. Martikainen and V. K. Lindroos: Scand. J. Metall. Vol. 10(1981), p.3.

Google Scholar

[9] T. Watanabe, Y. Suzuki, S. Tanii and H. Oikawa: Philos. Mag. Lett. Vol. 62(1990), p.9.

Google Scholar

[10] H. Ohtsuka, K. Ito, H. Wada and Y. Xu: J. Magn. Soc. Jpn. Vol. 24(2000), p.651.

Google Scholar

[11] C.M.B. Bacaltchuk, G.A. Castello-Branco, M. Ebrahimi, H. Garmestani and A.D. Rollett: Scripta Mater. Vol. 48(2003), p.1343.

DOI: 10.1016/s1359-6462(03)00015-0

Google Scholar

[12] L. Liu, L. Li, J. Huang and Q. Zhai: J. Magn. Magn. Mater. Vol. 324(2012), p.2301.

Google Scholar

[13] J. Huang, L. Li, L. Liu, X. Jiang, X. Xia and Q. Zhai: J. Mater. Sci. Vol. 47(2012), p.4110.

Google Scholar

[14] N. Masahashi, M. Matsuo and K. Watanabe: J. Mater. Res. Vol. 13(1998), p.457.

Google Scholar

[15] Y.D. Zhang, C. Esling, J.S. Lecomte, C.S. He, X. Zhao and L. Zuo: Acta Mater. Vol. 53(2005), p.5213.

Google Scholar

[16] K. Harada, S. Tsurekawa, T. Watanabe and G. Palumbo: Scripta Mater. Vol. 49(2003), p.367.

Google Scholar

[17] T. Watanabe, S. Tsurekawa, X. Zhao and L. Zuo: Scripta Mater. Vol. 54(2006), p.969.

Google Scholar

[18] W.W. Mullins: Acta Metall. Vol. 4(1956), p.421.

Google Scholar

[19] Z. Cai, J. Lin, H. Zhao and A. Lu: Mater. Sci. Eng. A Vol. 398(2005), p.344.

Google Scholar

[20] G. Tang, Z. Xu, M. Tang, X. Chen, H. Zhou and A. Lu: Mater. Sci. Eng. A Vol. 398(2005), p.108.

Google Scholar

[21] A.L. Lu, F. Tang, X. J. Luo, J. F. Mei and H. Z. Fang: J. Mater. Process. Technol. Vol. 74(1998), p.259.

Google Scholar