Modified Cuo/ZnO/Al2O3 Catalysts for Methanol Synthesis from Co and CO2 Co-Hydrogenation

Article Preview

Abstract:

A series of CuO-ZnO-Al2O3 catalysts modified by different promoter were prepared by co-precipitation or incipient wet impregnation and characterized by X-ray diffraction (XRD), N2 physisorption, hydrogen temperature-programmed reduction (H2-TPR) and carbon dioxide temperature-programmed desorption (CO2-TPD). The modified catalysts were tested for methanol synthesis from CO/CO2 co-hydrogenation in a fixed bed reactor with feed containing CO, CO2 and H2(CO:CO2:H2=1.0:1.08:6.24, volume radio). It is revealed that the catalysts modified by Zr, Mg, Ca has higher activity of methanol synthesis by CO and CO2 co-hydrogenation. Especially, the addition of Zr enhances the conversion of total carbon and the selectivity of methanol, which is due to the improved surface area, much more active sites, and the synergistically interaction between CuO and ZnO caused by the addition of Zr promoter.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1529-1534

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Olah, A. Goeppert, G. K. Surya Prakash: J.Org.Chem. Vol. 74(2009), p.487

Google Scholar

[2] G. A. Olah, G. K. Surya Prakash, A. Goeppert: J. Am. Chem. Soc. Vol. 133(2011), p.12881

Google Scholar

[3] D. J. Wang, F. R. Tao, H. H. Zhao, H. L. Song, L. J. Chou: Chinese J. Catal. Vol. 32(2011), p.1452

Google Scholar

[4] X. M. Guo, D. S. Mao, G. Z. Lu, S. Wang, G. S. Wu: Catal. Comm. Vol. 12(2011), p.1095

Google Scholar

[5] Y. F. Zhao, Y. Yang, C. Mims: J. Catal. Vol. 281(2011), p.199

Google Scholar

[6] A. K. Sayah: Renew. Sust. Energ. Rev. Vol. 15(2011), p.3570

Google Scholar

[7] L. S. Jia, J. Gao, W. P. Fang, Q. B. Li: Catal. Comm. Vol. 10(2009), p. (2000)

Google Scholar

[8] P. Liu, Y. Choi, Y. Yang, M. G. White: J. Phys. Chem. A Vol. 114(2010), p.3888

Google Scholar

[9] J. Sloczynski, R. Grabowski, A. Kozlowska, P. Olszewski, M. Lachowska, J. Skrzypek, J. Stoch: Appl. Catal. A:Gen. Vol. 249(2003), p.129

Google Scholar

[10] L. Maria, S. Jerzy: React. Kinet. Mech. Cat. Vol. 83(2004), p.269

Google Scholar

[11] J. S. Lee, K. I. Moon, S. H. Lee, S. Y. Lee, Y. G. Kim: Catal. Lett. Vol. 34(1995), p.93

Google Scholar

[12] X. An, J. L, Li, Y. Z. Zuo, Q. Zhang, D. Z. Wang, J. F. Wang: Catal. Lett. Vol118(2007), p.264

Google Scholar

[13] G. G. Wang, Y. Z. Zan, M. H. Han, J. F. Wang: React. Kinet. Mech. Cat. Vol. 101(2010), p.443

Google Scholar

[14] X. An, Y. Z. Zuo, Q. Zhang, J. F. Wang: Chinese J. Chem.. Eng. Vol. 17(2009), p.88

Google Scholar

[15] Y. Cao, L. F. Chen, W. L. Dai, K. N. Fan, D. Wu, Y. H. Sun: Chem. J. Chinese U.Vol.24(2003), p.1296

Google Scholar

[16] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan: Catal. Lett. Vol. 102(2005), p.183

Google Scholar

[17] F. Meshtorial, M. Taghizageh, M. Bahmani: Fuel. Vol. 89(2010), p.170

Google Scholar

[18] K. Klier: Adv. Catal. Vol. 31(1982), p.243

Google Scholar

[19] K. G. Chanchlani, R. R. Hudgins, P. L. Silveston: J. Catal. Vol. 136(1992), p.59

Google Scholar

[20] H. Y. Chen, S. P. Lau, L. Chen, J. Lin, C. H. A. Huan, K. L. Tan, J. S. Pan: Appl. Surf. Sic. Vol. 152(1999), p.193

Google Scholar

[21] Y. Choi, K. Futagami, T. Fujitani, J. Nakamura: Appl. Catal. A:Gen. Vol. 208(20012), p.163

Google Scholar

[22] Y. P. Zhang, J. H. Fei, Y. M. Yu, X. M. Zheng: Energ. Conv. Manage. Vol. 47(2006), p.3360

Google Scholar