Comparison of the Simulation and Experimental Fatigue Endurance Behaviors in T6-Treated Nanosized SiC Reinforced Al Alloy Composite

Article Preview

Abstract:

The fatigue endurance behaviors of SiC nanoparticle reinforced 6061 Al alloy composites (T6-treated SiCnp/6061Al) were simulated by finite element (FE) method with the help of recently developed cyclic viscoplastic constitutive model and its implementation into a FE code Solidworks simulation. The Rice-Tracey damage parameter was used for the crack path calculation did the prediction agree completely with the observed behavior. FE simulation of the materials showed that the composite samples exhibit regular crack propagation behavior. At early stages of loading the hydrostatic stress was low and the damage evolution was affected by the plastic flow. The damage grew in outer layers where the maximum equivalent plastic strain occurs. By increasing the number of fatigue failure cycles at 3×105 cycles, the hydrostatic stress increased and its effect became dominant. In the 200 MPa tests the slope of the tensile portion of the hysteresis loops decreased with fatigue cycling, indicating progressive decrease in the tensile modulus. Stress concentration, due to the presence of nanoparticle reinforcements, produces controlled crack growth and higher stresses, which are related to regular energy release by the material during fracture. The need for higher stresses for a crack to propagate reveals the materials microstructural strength.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1762-1766

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q.C. Jiang, X.L. Li, and H.Y. Wang:Scripta Materialia, Vol.48, (2003), p.713.

Google Scholar

[2] S. Ishihara, S.S. Saka, Z.Y. Nan, T.Goshima and S.Sunada: Fatigue & Fracture of Engineering Materials & Structures, Vol.29,(2006),pp.472-480.

DOI: 10.1111/j.1460-2695.2006.01018.x

Google Scholar

[3] D.P. Myriounis, S.T. Hasan and T.E. Matikas: Composite Interfaces, Vol.15, (2008),pp.495-514.

Google Scholar

[4] S. Hirsosawa,Y.Shigemoto,T. Miyoshi and H. Kanekiyo:Scripta materialia,Vol.48,(2003),p.839.

Google Scholar

[5] Y. Yang, J. Lan, and X. Li:Materials Science and Engineering A, vol.380, (2004),p.378.

Google Scholar

[6] A. Urenua, M.D. Escalera, L Gil, Journal of materials science, Vol.37,(2002),p.4633.

Google Scholar

[7] D.V. Ramsamooj: J Fatigue. Vol.25(9-11),(2003),pp.923-33.

Google Scholar

[8] D. P. Myriounis, T. E. Matikas and S. T. Hasan: Strain, Vol.48, (2012) ,p.333–341.

Google Scholar

[9] J. LLorca:Progress in Materials Science ,Vol.47, (2002), pp.283-353.

Google Scholar

[10] M.Arif Abul Fazal: J Mater Process Technol. Vol.136, (2003), pp.120-38.

Google Scholar

[11] A. Ray and P. Patanker: Appl Math Modell. Vol.25, (2001), pp.979-94.

Google Scholar

[12] X.D. Ren, Y.K. Zhang, J.Z. Zhou, J.Z. Lu, L.C. Zhou: Mater Des. Vol.30 (2009),pp.3512-7.

Google Scholar

[13] H. Moslemi and A.R. Khoei:Transaction A:Civil Engineering, Vol.17(5),(2010),pp.372-385.

Google Scholar

[14] P.C. Paris, T. Palin-Luc, H. Tada and N.Santier: Crack Paths, 2009, Vicenza, Italy: 495-502.

Google Scholar

[15] Pilkey WD, Pilkey DF. Peterson's Stress Concentrations Factors, Third Edition, John Wiley & Sons (Edit.) 2007.

Google Scholar

[16] A. Mortensen, Proc. Int. Conf. Fabrication of Particulate Reinforced Metal Composites, Quebec, Canada, (1990) 217-23.

Google Scholar

[17] M.Cerit, K. Genel and S.Eksi:Engineering Failure Analysis. Vol.16, (2009),pp.2467-2472.

DOI: 10.1016/j.engfailanal.2009.04.004

Google Scholar

[18] Y.K. Zhang, X.D. Ren, J.Z. Zhou, J.Z. Lu, Zhou L.C.: Mater Des. 2009;30:2769-73.

Google Scholar

[19] G.M. D. Almaraz, V.H. M. Lemus and J.J. V. Lopez1:Procedia Eng. Vol.2.(2010),pp.805-813.

Google Scholar

[20] Billaudeau T, Nadot Y, Bezine G. Acta Materialia, Vol.52, (2004),pp.3911-3920.

DOI: 10.1016/j.actamat.2004.05.006

Google Scholar

[21] Y.Nadot and T. Billaudeau: Engineering Fracture Mechanics, Vol.73,(2006),pp.112-133.

Google Scholar

[22] J.W. Hancock and A.C. Mackenzie: Journal of Mechanics and Physics of Solids, 1976; 24:147-169.

Google Scholar

[23] K.Van der Walde and B.M. Hillberry:International Journal of Fatigue, Vol.30,(2008),pp.106-118.

Google Scholar

[24] D.P. Myriounis, S.T. Hasan, T.E. Matikas, J. ASTM Int. 5 (2008).

Google Scholar

[25] Jones K, Hoeppner DW., International Journal of Fatigue 2009; 31: 686-692.

Google Scholar

[26] B. Roebuck, J. Lord, Materials Science &Technology. 6 (1990) 1199-1209.

Google Scholar

[27] R.J. Arsenault, S. Fishman, M. Taya, Progress in Materials Science. 38 (1994) 1-157.

Google Scholar

[28] J.K. Shang, W. Yu, R.O. Ritchie, Mater Sci Eng. A102 (1988) 181–92.

Google Scholar

[29] L. Yu, Y. L. Jiang, S. K. Lu, H. Q. Ru and M. Fang, Applied Mechanics and Materials, Vol.120 (2012),p.51–55.

Google Scholar

[30] L. Yu, Y. L. Jiang, H. Q. Ru, J. T. Liu and K. Luo, Advanced Materials Research, Vol.39–242, (2011), p.1661–1664.

Google Scholar

[31] S.K. Lu, W.R. Wei, L. Yu,Y.L. Jiang, J.C. Tan, H. Q. RU: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering ,pp.5970-5973.

Google Scholar

[32] S.K. Lu, X.H. Yi, L.Yu, Y.L Jiang, W.R. Wei: 2011 SREE Conference on Engineering Modelling and Simulation (CEMS 2011), p.242–247.

Google Scholar

[33] S. K. Lu, H. Y. Liu, L.Yu, Y.L Jiang, J. H. Su: 2011 SREE Conference on Engineering Modelling and Simulation (CEMS 2011), p.35–40.

Google Scholar

[34] S. D. Liao and S. K. Lu: Advanced Materials Research, Vol.652-654, (2013), p.139.

Google Scholar