A New Experimental Technique for Dynamic Material Properties

Article Preview

Abstract:

An improved experimental method has been described to determine dynamic material properties under conditions approximating uniform one-dimensional tensile loading. A lateral efficiency loading is produced when the projectile, which is made of low-density material, impacts high-intensity target. The lateral efficiency loading technique is a convenient and effective technique to study the dynamic fracture and fragmentation properties of materials under high strain rate tensile loading.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1872-1877

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Lu, Journal of Mechanical Science and Technology 25 (2011) 2775-2780.

Google Scholar

[2] Z.J. Xu, Y.L. Li, F.L. Huang, Acta Mechanica Sinica (2012) 1-8.

Google Scholar

[3] U. Zencker, R. Clos, Experimental Mechanics 39 (1999) 343-348.

Google Scholar

[4] W.W. Chen, B. Song, Split Hopkinson (Kolsky) Bar (2011) 1-35.

Google Scholar

[5] N. Perrone, Experimental Mechanics 8 (1968) 232-236.

Google Scholar

[6] H. Zhang, K. Ravi-Chandar, Fracture of Nano and Engineering Materials and Structures (2006) 497-498.

Google Scholar

[7] P. Johnson, B. Stein, R. Davis, Measurement of dynamic plastic flow properties under uniform stress, in: 1963, pp.195-198.

Google Scholar

[8] D. Grady, D. Benson, Experimental Mechanics 23 (1983) 393-400.

Google Scholar

[9] J. Janiszewski, International Journal of Solids and Structures (2012).

Google Scholar

[10] G. Paulus, P. Chanteret, E. Wollmann, PELE: A New Penetrator Concept for the Generation of Lateral Effects, in: 2004, pp.104-110.

Google Scholar

[11] G. Paulus, V. Schirm, International Journal of Impact Engineering 33 (2006) 566-579.

Google Scholar

[12] J. Weng, H. Tan, X. Wang, Y. Ma, S. Hu, Applied Physics Letters 89 (2006) 111101-111101-111103.

Google Scholar

[13] L. Barker, R. Hollenbach, Journal of Applied Physics 43 (1972) 4669-4675.

Google Scholar

[14] J. Weng, X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, C. Liu, Review of Scientific Instruments 79 (2008) 113101-113101-113103.

DOI: 10.1063/1.3020700

Google Scholar

[15] J. Meulbroek, K. Ramesh, P. Swaminathan, A. Lennon, International Journal of Impact Engineering 35 (2008) 1661-1665.

DOI: 10.1016/j.ijimpeng.2008.07.066

Google Scholar

[16] W. Chen, Dynamic failure behavior of ceramics under multiaxial compression, in: vol Ph. D, California Institute of Technology, Pasadena, California, 1995, p.218.

Google Scholar