Parameter Optimization of the Injection Molding Process for a LED Lighting Lens Using Soft Computing

Article Preview

Abstract:

This study proposes a parameter optimization system for a multi-LED lighting lens, which uses design of experiment (DOE) for screening the process parameters, computer-aided engineering (CAE) for mold flow analysis, analysis of variance (ANOVA) for determining the significant parameters, and response surface methodology (RSM) for finding the initial parameter settings in terms of multi-objective quality characteristics. In addition, two regression models, obtained from RSM, are employed as the quality predictors which are combined with the particle swarm optimization (PSO) to generate the optimal molding parameter settings. The numerical results show that the proposed approach, RSM with PSO, is beneficial to obtain the better process parameter settings in the injection molding process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

2344-2351

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H. Gandomi and A.H. Alavi: A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput Appl 21(1) (2012), pp.171-187

DOI: 10.1007/s00521-011-0734-z

Google Scholar

[2] A. Mirigul: Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Mater Des 31(1) (2010), pp.599-604.

DOI: 10.1016/j.matdes.2009.06.049

Google Scholar

[3] B. Ozcelik and T. Erzurumlu: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J Mater Process Technol 171(3) (2006), pp.437-445.

DOI: 10.1016/j.jmatprotec.2005.04.120

Google Scholar

[4] C.F. Ng, S. Kamaruddin, A.N. Siddiquee, Z.A. Khan: Experimental Investigation on the Recycled HDPE and Optimization of Injection Moulding Process Parameters via Taguchi Method. IJMME 6(1) (2011), pp.81-91.

Google Scholar

[5] F. Shi, Z. L. Lou, Y. Q. Zhang, and J. G. Lu: Optimisation of Plastic Injection Moulding Process with Soft Computing. Int J Adv Manuf Technol 21(9) (2003), pp.656-661.

DOI: 10.1007/s00170-002-1374-3

Google Scholar

[6] F. Yin, H. Mao, L. Hua, W. Guo and M. Shu: Back-propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Mater Des 32 (2011), pp.1844-1850.

DOI: 10.1016/j.matdes.2010.12.022

Google Scholar

[7] J. Smrelar, D. Pandit, M. Fast, M. Assadi and De. Sudipta: Prediction of power output of a coal-fired power plant by artificial neural network. Neural Comput Appl 19(5) (2010), pp.725-740

DOI: 10.1007/s00521-009-0331-6

Google Scholar

[8] M. Altan: Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network method. Mater Des 31(2010), pp.599-640.

DOI: 10.1016/j.matdes.2009.06.049

Google Scholar

[9] S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin: The use of Taguchi method in the design of plastic injection mould for reducing warpage. J Mater Process Technol, 182(1-3) (2007), pp.418-426.

DOI: 10.1016/j.jmatprotec.2006.08.025

Google Scholar

[10] T. S. Kwak, T. Suzuki, W. B. Bae, Y. Uehara and H. Ohmori: Application of neural network and computer simulation to improve surface profile of injection molding optic lens. J Mater Process Technol 170(1-2) (2005), pp.24-31.

DOI: 10.1016/j.jmatprotec.2005.04.099

Google Scholar

[11] W. C. Chen, D. Kurniawan and G.L. Fu: Optimization of process parameters using DOE, RSM and GA in plastic injection molding, AMR Vol. 472-475(2012), pp.1220-1223

DOI: 10.4028/www.scientific.net/amr.472-475.1220

Google Scholar

[12] W. C. Chen, K. P. Liu, B. Liu and T. T. Lai: Optimization of Optical Design for Developing a LED Lens Module, Neural Comput Appl DOI 10.1007/s00521-012-0990-6(2012), published online.

Google Scholar

[13] W. C. Chen, M. W. Wang, C. T. Chen and G. L. Fu: An integrated parameter optimization system for MISO plastic injection molding. Int J Adv Manuf Technol, 44(5) (2008), pp.501-511.

DOI: 10.1007/s00170-008-1843-4

Google Scholar

[14] W. C. Chen, P. H. Tai, M. W. Wang, W. J. Deng and C. T. Chen: A neural network-based approach for a dynamic quality predictor in plastic injection molding process. Expert Syst Appl 35(3) (2008), p.843–849.

DOI: 10.1016/j.eswa.2007.07.037

Google Scholar

[15] YK Yang, J. R. Shi, R. T. Yang and H. A. Chang: Optimization of Injection Molding Process for Contour Distortion of Polypropylene Composite Components via Design of Experiments Method. J Rein Plast Compos 25(15) (2006), p.1585–1599.

DOI: 10.1177/0731684406068398

Google Scholar