[1]
A.H. Gandomi and A.H. Alavi: A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput Appl 21(1) (2012), pp.171-187
DOI: 10.1007/s00521-011-0734-z
Google Scholar
[2]
A. Mirigul: Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Mater Des 31(1) (2010), pp.599-604.
DOI: 10.1016/j.matdes.2009.06.049
Google Scholar
[3]
B. Ozcelik and T. Erzurumlu: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J Mater Process Technol 171(3) (2006), pp.437-445.
DOI: 10.1016/j.jmatprotec.2005.04.120
Google Scholar
[4]
C.F. Ng, S. Kamaruddin, A.N. Siddiquee, Z.A. Khan: Experimental Investigation on the Recycled HDPE and Optimization of Injection Moulding Process Parameters via Taguchi Method. IJMME 6(1) (2011), pp.81-91.
Google Scholar
[5]
F. Shi, Z. L. Lou, Y. Q. Zhang, and J. G. Lu: Optimisation of Plastic Injection Moulding Process with Soft Computing. Int J Adv Manuf Technol 21(9) (2003), pp.656-661.
DOI: 10.1007/s00170-002-1374-3
Google Scholar
[6]
F. Yin, H. Mao, L. Hua, W. Guo and M. Shu: Back-propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Mater Des 32 (2011), pp.1844-1850.
DOI: 10.1016/j.matdes.2010.12.022
Google Scholar
[7]
J. Smrelar, D. Pandit, M. Fast, M. Assadi and De. Sudipta: Prediction of power output of a coal-fired power plant by artificial neural network. Neural Comput Appl 19(5) (2010), pp.725-740
DOI: 10.1007/s00521-009-0331-6
Google Scholar
[8]
M. Altan: Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network method. Mater Des 31(2010), pp.599-640.
DOI: 10.1016/j.matdes.2009.06.049
Google Scholar
[9]
S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin: The use of Taguchi method in the design of plastic injection mould for reducing warpage. J Mater Process Technol, 182(1-3) (2007), pp.418-426.
DOI: 10.1016/j.jmatprotec.2006.08.025
Google Scholar
[10]
T. S. Kwak, T. Suzuki, W. B. Bae, Y. Uehara and H. Ohmori: Application of neural network and computer simulation to improve surface profile of injection molding optic lens. J Mater Process Technol 170(1-2) (2005), pp.24-31.
DOI: 10.1016/j.jmatprotec.2005.04.099
Google Scholar
[11]
W. C. Chen, D. Kurniawan and G.L. Fu: Optimization of process parameters using DOE, RSM and GA in plastic injection molding, AMR Vol. 472-475(2012), pp.1220-1223
DOI: 10.4028/www.scientific.net/amr.472-475.1220
Google Scholar
[12]
W. C. Chen, K. P. Liu, B. Liu and T. T. Lai: Optimization of Optical Design for Developing a LED Lens Module, Neural Comput Appl DOI 10.1007/s00521-012-0990-6(2012), published online.
Google Scholar
[13]
W. C. Chen, M. W. Wang, C. T. Chen and G. L. Fu: An integrated parameter optimization system for MISO plastic injection molding. Int J Adv Manuf Technol, 44(5) (2008), pp.501-511.
DOI: 10.1007/s00170-008-1843-4
Google Scholar
[14]
W. C. Chen, P. H. Tai, M. W. Wang, W. J. Deng and C. T. Chen: A neural network-based approach for a dynamic quality predictor in plastic injection molding process. Expert Syst Appl 35(3) (2008), p.843–849.
DOI: 10.1016/j.eswa.2007.07.037
Google Scholar
[15]
YK Yang, J. R. Shi, R. T. Yang and H. A. Chang: Optimization of Injection Molding Process for Contour Distortion of Polypropylene Composite Components via Design of Experiments Method. J Rein Plast Compos 25(15) (2006), p.1585–1599.
DOI: 10.1177/0731684406068398
Google Scholar