[1]
I. Babuska, J. Osborn, Eigenvalue Problems, in: P. G. Ciarlet, J. L. Lions, (Ed.), Finite Element Methods(Part 1), Handbook of Numerical Analysis, vol. 2, Elsevier Science Publishers, North-Holand, pp.640-787, 1991.
DOI: 10.1016/s1570-8659(05)80042-0
Google Scholar
[2]
T. L. Beck, Real-space mesh techniques in density-function theory, Rev. Mod. Phys., 72, pp.1041-1080, 2000.
DOI: 10.1103/revmodphys.72.1041
Google Scholar
[3]
C. Canuto, A. Quarteroni, M. Y. Hussaini, T. A. Zang, Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer, Heidelberg, 2007.
DOI: 10.1007/978-3-540-30728-0
Google Scholar
[4]
X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110, pp.313-355, 2008.
DOI: 10.1007/s00211-008-0169-3
Google Scholar
[5]
X. Dai, A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 46(1), pp.295-324, 2008.
DOI: 10.1137/06067780x
Google Scholar
[6]
X. Gong, L. Shen, D. Zhang, A. Zhou, Finite element approximations for Schrödinger equations with applications to electronic structure computations, Comp. Math., 26(3), pp.1-14, 2008.
Google Scholar
[7]
R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, London, 2004.
Google Scholar
[8]
J. Shen, T. Tang, L. L. Wang, Spectral Methods, springer, Heidelberg, 2011.
Google Scholar
[9]
Y. Yang, Finite Element Methods for Eigenvalue Problems (in Chinese), Science Press, Beijing, China, 2012.
Google Scholar
[10]
Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal., 49 , pp.1602-1624, 2011.
DOI: 10.1137/100810241
Google Scholar