Spectral Element Approximation for the Eigenvalue Problem of Hydrogen Atoms Electronic Structure

Article Preview

Abstract:

In this paper, the spectral element methods are adopted to solve the eigenvalue problem of hydrogen atoms electronic structure. A local refinement algorithm based on spectral element approximation is constructed to solve the problem on different domains. Numerical experiments indicate this algorithm is highly efficient.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

3199-3202

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Babuska, J. Osborn, Eigenvalue Problems, in: P. G. Ciarlet, J. L. Lions, (Ed.), Finite Element Methods(Part 1), Handbook of Numerical Analysis, vol. 2, Elsevier Science Publishers, North-Holand, pp.640-787, 1991.

DOI: 10.1016/s1570-8659(05)80042-0

Google Scholar

[2] T. L. Beck, Real-space mesh techniques in density-function theory, Rev. Mod. Phys., 72, pp.1041-1080, 2000.

DOI: 10.1103/revmodphys.72.1041

Google Scholar

[3] C. Canuto, A. Quarteroni, M. Y. Hussaini, T. A. Zang, Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer, Heidelberg, 2007.

DOI: 10.1007/978-3-540-30728-0

Google Scholar

[4] X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110, pp.313-355, 2008.

DOI: 10.1007/s00211-008-0169-3

Google Scholar

[5] X. Dai, A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 46(1), pp.295-324, 2008.

DOI: 10.1137/06067780x

Google Scholar

[6] X. Gong, L. Shen, D. Zhang, A. Zhou, Finite element approximations for Schrödinger equations with applications to electronic structure computations, Comp. Math., 26(3), pp.1-14, 2008.

Google Scholar

[7] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, London, 2004.

Google Scholar

[8] J. Shen, T. Tang, L. L. Wang, Spectral Methods, springer, Heidelberg, 2011.

Google Scholar

[9] Y. Yang, Finite Element Methods for Eigenvalue Problems (in Chinese), Science Press, Beijing, China, 2012.

Google Scholar

[10] Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal., 49 , pp.1602-1624, 2011.

DOI: 10.1137/100810241

Google Scholar