A Molecule Computing Model for Maximum Independent Set Problem Based on DNA/AuNP Conjugation

Article Preview

Abstract:

With the progress of DNA computing and nanotechnology, DNA/AuNP conjugation becomes an emerging interdisciplinary field. In this paper, a novel DNA computing model based on DNA/AuNP conjugation is developed to solve a maximum independent set problem (MIS). Making use of the hybridization between long DNA strands and short strands conjugated with gold nanoparticles, a series of searching process is implemented. After that, based on the number of DNA/AuNP conjugation on one DNA strand, the answer of the MIS is obtained. To verify the proposed algorithm, a simple paradigm is calculated by using the DNA computing model. In this model, there are some significant advantages such as easy detecting, and controllable automation. This work may demonstrate that DNA computing has the great potentiality in huge parallelism computation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

445-449

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M. Adleman: Science Vol. 266 (1994), p.1021

Google Scholar

[2] J. Yang, C. Zhang, J. Xu, et al. Sci China Ser F-Inf. Sci. Vol. 53 (2010), p.1409

Google Scholar

[3] Jong-Shik Shin, N. A. Pierce: Nano Letters Vol. 4 (2004), p.905

Google Scholar

[4] C. T. Celland, V. Risca, C. Bancroft: Nature Vol. 399 (1999), p.533

Google Scholar

[5] A. Leier, C. Richter, W. Banzhaf, et al. Biosystems Vol. 57 (2000), p.13

Google Scholar

[6] Q. Ouyang, P. D. Kaplan, S. Liu, A. Libchaber: Science Vol. 278 (1997), p.446

Google Scholar

[7] R. Braich, N. Chelyapov, C. Johnson, et al. Science Vol. 296 (2002), p.499

Google Scholar

[8] J. Xu, X. L. Qiang, G. Fang, K. Zhou: Chinese Sci. Bull. Vol. 51 (2006), p.2541

Google Scholar

[9] X. Wang, Z. Bao, J. Hu, et al. BioSystems Vol. 91 (2008), p.117

Google Scholar

[10] T. Head, G. Rozenberg, R. S. Bladergroen, et al. Biosystems Vol. 57 (2000), p.87

Google Scholar

[11] R. P. Goodman: Nature nanotechnology Vol. 3 (2008), p.93

Google Scholar

[12] C. Zhang, J. Yang, J. Xu: Langmuir Vol. 26 (2010), p.1416

Google Scholar

[13] L. Qian, E. Winfree: Science Vol. 332 (2011), p.1196

Google Scholar

[14] Gregor Heiss, Vidmantes Lapiene, Florian Kukolka, et al. Small Vol. 5(2009), p.1169

Google Scholar

[15] S. R. Shin, K. S. Jin, C. K. Lee, et al. Adv. Mater. Vol. 21 (2009), p. (1907)

Google Scholar

[16] B. Chakraborty, R. Sha, and N. C. Seeman: Proc. Natl. Acad. Sci. USA, Vol. 45(2008), p.17245

Google Scholar

[17] C. Mao, T. H. LaBean, J. H. Reif, N. C. Seeman: Nature Vol. 407 (2000), p.493

Google Scholar

[18] C. Zhang, J. Yang, J. Xu: Chinese Sci. Bull. Vol. 56 (2011), p.3566

Google Scholar