Roller Bearing Fault Diagnosis Based on IMF Kurtosis and SVM

Article Preview

Abstract:

This paper presents a fault diagnosis method of roller bearings based on intrinsic mode function (IMF) kurtosis and support vector machine (SVM). In order to improve the performance of kurtosis under strong levels of background noise, the empirical mode decomposition (EMD) method is used to decompose the bearing vibration signals into a number of IMFs. The IMF kurtosis is then calculated because of its sensitivity of impulses caused by faults. Subsequently, the IMF kurtosis values are treated as fault feature vectors and input into SVM for fault classification. The experimental results show the effectiveness of the proposed approach in roller bearing fault diagnosis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

1160-1166

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Abbasion, A. Rafsanjani, A. Farshidianfar, N. Irani: Mechanical Systems and Signal Processing Vol. 21 (2007), pp.2933-2945.

DOI: 10.1016/j.ymssp.2007.02.003

Google Scholar

[2] C.T. Yiakopoulos and I.A. Antoniadis: Shock and Vibration Vol. 6 (2002), pp.293-306.

Google Scholar

[3] J. Shiroishi, Y. Li, S. Liang, T. Kurfess, S. Danyluk: Mechanical Systems and Signal Processing Vol. 11 (1997), pp.693-705

DOI: 10.1006/mssp.1997.0113

Google Scholar

[4] F.C. Li, G. Meng, L. Ye, P. Chen: Journal of Vibration and Control Vol. 14 (2008), pp.1691-1709

Google Scholar

[5] Y. Yang, D.J. Yu, J.S. Cheng: Journal of Sound and Vibration Vol. 294 (2006), pp.269-277.

Google Scholar

[6] R. Yan, R.X. Gao: Mechanical Systems and Signal Processing Vol. 21(2007), pp.824-839

Google Scholar

[7] L. Zhang, G.L. Xiong, H.S. Liu, H. J. Zou, W. Z. Guo: Expert Systems with Applications Vol. 37 (2010), pp.6017-6085.

Google Scholar

[8] D. Logan, J. Mathew: Mechanical Systems and Signal Processing Vol. 10 (1996), pp.241-250.

Google Scholar

[9] T. Marwala, in: Condition Monitoring Using Computational Intelligence Methods, Springer-verlag (2012)

Google Scholar

[10] J. Antoni, R.B. Randall: Mechanical Systems and Signal Processing Vol. 20 (2006), pp.308-331

Google Scholar

[11] N.E. Huang, Z. Shen, S. R. Long: Proceedings of Royal Society of London Series A Vol.454 (1998), pp.903-995.

Google Scholar

[12] V.N. Vapnik, in: The Nature of Statistical Learning Theory, Springer-verlag (1995).

Google Scholar

[13] Z.W. Liu, H.R. Cao, X.F. Chen, Z.J. He, Z.J. Shen: Neurocomputing Vol. 99 (2013), pp.399-410.

Google Scholar

[14] S. Abbasion, A. Rafsanjani, A. Farshidianfar, N. Irani: Mechanical Systems and Signal Processing Vol. 21 (2007), pp.2933-2945.

DOI: 10.1016/j.ymssp.2007.02.003

Google Scholar

[15] Z.J. Shen, X.F. Chen, X.L. Zhang, Z.J. He: Measurement Vol. 45 (2012), pp.30-40.

Google Scholar

[16] N.E. Huang, Z. Shen, S.R. Long: Annual Reviews of Fluid Mechanics Vol. 3 (1999), pp.417-457.

Google Scholar

[17] C.W. Hsu, C.J. Lin: IEEE Transactions on Neural Networks Vol. 13 (2002), pp.415-425.

Google Scholar

[18] A. Widodo, B.S. Yang: Mechanical Systems and Signal Processing Vol. 21 (2007), pp.2560-2574.

Google Scholar

[19] Information on http://www.csie.ntu.edu.tw/~cjlin

Google Scholar

[20] Information on http://csegroups.case.edu/bearingdatacenter/pages/download-data-file

Google Scholar