An Efficient Detail-Preserving Random-Valued Impulse Noise Filter

Article Preview

Abstract:

This paper presents an efficient detail-preserving random-valued impulse noise filter. The proposed method introduced an image statistic, the decision-based rank ordered absolute differences (DROAD for short), to distinguish image details from impulses. This reduces the probability of detecting image details as impulses. Besides, in order to search for suitable thresholds at noise detecting phase, we present the Q-estimate of variance in noisy image. According to image variance, we define a threshold for each pixel. This makes more impulses can be identified. Experiments results show that our filter provides a significant improvement over many other existing techniques.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

1407-1412

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. C. Gonzalez and R. E. Woods: Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 2002.

Google Scholar

[2] S. Akkoul, R. Lédée, R.Leconge, and R.Harba: A new adaptive switching median filter. IEEE Signal Process Lett., vol. 17 (2010), p.58.

DOI: 10.1109/lsp.2010.2048646

Google Scholar

[3] T. Chen and H. R. Wu: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process Lett., vol. 8 (2001), p.1.

DOI: 10.1109/97.889633

Google Scholar

[4] A. S. Awad: Standard deviation for obtaining the optimal direction in removal of impulse noise. IEEE Signal Process. Lett. vol. 18 (2011), p.407.

DOI: 10.1109/lsp.2011.2154330

Google Scholar

[5] C. Lin, J. H. Tsai and C. T. Chiu: Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Trans. Image Progress. vol. 19(2010), p.2307.

DOI: 10.1109/tip.2010.2047906

Google Scholar

[6] U. Ghanekar, A. K. Singh and R. Pandey, "The contrast enhancement-based filter for removal of random valued impulse noise," IEEE Signal Process Lett., vol. 17(2010), p.47.

DOI: 10.1109/lsp.2009.2032479

Google Scholar

[7] B. Xiong and Z. Yin, "A universal denoising framework with a new impulse detector and nonlocal means," IEEE Trans. Image Progress. vol. 21 (1012), p.1663.

DOI: 10.1109/tip.2011.2172804

Google Scholar

[8] M. Nikolova: A variational approach to remove outliers and impulse noise. J. Math. Imag. Vis., vol. 20(2004), p.99.

Google Scholar

[9] R. H. Chan, C. Hu and M. Nikolova: An iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett., vol. 11(2004), p.921.

DOI: 10.1109/lsp.2004.838190

Google Scholar

[10] Y. Dong, R. H. Chan and S. Xu: A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. vol. 16 (2007), p.1112.

DOI: 10.1109/tip.2006.891348

Google Scholar

[11] R.Garnett, T. Huegerich, C.Chui and W. He: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. vol.14 (2005), p.1747.

DOI: 10.1109/tip.2005.857261

Google Scholar

[12] P. J. Rousseeuw and C. Croux: Aternatives to then median absolute deviation. J. Am. Stat. Assoc., vol. 88(1993), p.1273.

Google Scholar

[13] J. Astola and P. Kuosmanen: Fundamentals of Nonlinear Digital Filtering. CRC Press, Boca Raton, Florida, 1997.

Google Scholar

[14] Y. Dong and S. Xu: A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process Lett., vol. 14(2007), p.193.

DOI: 10.1109/lsp.2006.884014

Google Scholar

[15] J. F. Cai, R. H. Chan and B. Morini: Minimization of an edges-preserving regularization functional by conjugate gradient type methods. J. Math. Imag. Vis., vol. 29(2007), p.79.

Google Scholar