[1]
Hllina J, Sonsky J. Time-resolved tomographic measurements of temperatures in a thermal plasma jet. Journal of Physics D: Applied Physics, 2010, 43:055202.
DOI: 10.1088/0022-3727/43/5/055202
Google Scholar
[2]
Upton T D, Verhoeven D D, Hudgins D E. High-resolution computed tomography of a turbulent reacting flow. Experiments in Fluids, 2011, 50(1):125-134.
DOI: 10.1007/s00348-010-0900-6
Google Scholar
[3]
Anand A, Savery D, Hall C. Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2007, 54(1):23-31.
DOI: 10.1109/tuffc.2007.208
Google Scholar
[4]
Mougenot C, Quesson B, Senneville B D, Oliveira P L, Sprinkhuizen S, Palussière J, Grenier N,Moonen C. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magnetic Resonance in Medicine, 2009, 61(3):603-614.
DOI: 10.1002/mrm.21887
Google Scholar
[5]
Shimoda M, Sugano A, Kimura T, Watanabe Y, Ishiyama K. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion fame. IEEE Transactions on Energy Conversion, 1990, 5(4):640-645.
DOI: 10.1109/60.63133
Google Scholar
[6]
Wu Z S. Luminous fame image processing and its application in combustion monitoring [Ph. D.Dissertation], Tsinghua University, China, 1998.
Google Scholar
[7]
Tu X, Yan J H, Yu L, Cen K F, Chéron B. The nature of fluctuations in a double arc argon-nitrogen plasma jet. Applied Physics Letters, 2007, 91:131501.
DOI: 10.1063/1.2789397
Google Scholar
[8]
Wang S M, Zhao Y J, Wang F L. Study of reconstruction 3D temperature field of fame using OST. Journal of Engineering Thermophysics, 2002, 23(3):2404-2408.
Google Scholar
[9]
Zhang X Y, Cheng Q, Lou C, Zhou H C. An improved colorimetric method for visualization of 2-D, inhomogeneous temperature distribution in a gas fired industrial furnace by radiation image processing. Proceedings of the Combustion Institute, 2011, 33:2755-2762.
DOI: 10.1016/j.proci.2010.06.119
Google Scholar
[10]
Hossain M M, Yu G, Yan Y. Optical fiber imaging based tomographic reconstruction of burner flames. IEEE Transaction on Instrumentation and Measurement, 2012, 61(5):1417-1425.
DOI: 10.1109/tim.2012.2186477
Google Scholar
[11]
Gilabert G, Yu G, Yan Y. Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame. IEEE Transaction on Instrumentation and Measurement, 2012, 56(4):1300-1306.
DOI: 10.1109/tim.2007.900161
Google Scholar
[12]
Debevec P E, Malik J. Recovering high dynamic range radiance maps from photographs. SIGGRAPH, 1997, 369-378.
DOI: 10.1145/1401132.1401174
Google Scholar
[13]
Zhao H, Feng H J, Xu Z H, Li Q. Research on temperature distribution of combustion fames based on high dynamic range imaging. Numerical Heat Transfer, 2007, 39(7):1351-1359.
DOI: 10.1016/j.optlastec.2006.11.004
Google Scholar
[14]
R. Szeliski. Rapid Octree Construction from Image Sequences. CVGIP, 1993, 58(1):23-32.
DOI: 10.1006/ciun.1993.1029
Google Scholar