Synchronization between Two Different Fractional Order Hyperchaotic Systems

Article Preview

Abstract:

Chaos synchronization between two different fractional order hyperchaotic systems is presented. By using feedback controlmethod, the synchronization between two different fractional orderhyperchaotic systems is achieved based on Laplace transformation theory. Numerical simulations illustrate the effectiveness of the proposed theory.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

2168-2171

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L,M, Pecora, T,L, Carroll. Phys. Rev. Lett., Vol. 64(1990), p.821.

Google Scholar

[2] S.S,Ge , C,Wang , T,H, Lee. Int. J. Bifurca-tion and Chaos, Vol.10(20005),p.1139.

Google Scholar

[3] E,W, Bai, K,E, Lonngren. Chaos Solit. Fract., , Vol.11(2000),p.1041.

Google Scholar

[4] A,S, Hegazi , H,N,Agiza , M,El-Dessoky. Int.J.Bifurcation and Chaos, Vol.12(2002), p.1579

DOI: 10.1142/s0218127402005388

Google Scholar

[5] H,T,Yau , C,K,Chen , C,L,Chen. . Int. J.Bifurcation and Chaos, Vol.10(2000), p.1139.

Google Scholar

[6] C,G,Li, X,F, Liao, J,B, Yu.. PHYSICAL REVIEW E , Vol.68(2003), p.067203.

Google Scholar

[7] Y,G,Yu, H,X, Li. . Physica A , , Vol.387 (2008), pp.1393-1403.

Google Scholar

[8] Q,S,ZHONG,J,F,BAO,Y,B,YU,X,F,LIAO.CHIN.PHYS.LETT. Vol.25,2008),p.2812

Google Scholar

[9] W,H, Deng, C,P, Li. Physica A, Vol. 353(2005),p.61.

Google Scholar

[10] CG Li , GR Chen .. Solitons and Fractals ,, Vol.22 (2004), p.549

Google Scholar

[11] DGVarsha, BSachin..Computers and Mathematics with Applications, Vol.59(2010), p.1117.

Google Scholar

[12] CP Lia, WHDeng ,D Xu Physica A, Vol.360 (2006), p.171.

Google Scholar

[13] CJ Wu, YBZhang ,NN Yang. Chin. Phys. B, , Vol.20 (2011 ), p.060505.

Google Scholar

[14] T Gao, G Chen, Z Chen, S Cang.. Phys. Lett. A., , Vol.36(2007), p.78.

Google Scholar

[15] M Caputo.. Geophys J Roy Astronom Soc , Vol.13(1967),p.529.

Google Scholar

[16] XJ Wu , HT Lu , SL Shen. Physics Letters A, ,Vol. 373(2009) p.2329.

Google Scholar

[17] XY Wang , JMSong.. Commun Nonlinear Sci Numer Simulat., Vol .14(2009),p.3351.

Google Scholar