Orthogonal Design and Analysis of Variance Based Performance Analysis of Differential Evolution Algorithm

Article Preview

Abstract:

In the "call for paper" of 2013 IEEE Congress on Evolutionary Computation (CEC 2013), Special Session on "Differential Evolution: Past, Present and Future", "Experimental design and analysis of DE" is the third area. In this paper, we propose a rapid analysis approach based on Orthogonal Design (OD) and Analysis of Variance (ANOVA) for performance of DE. The analysis results can be the reliable basis of the principles guiding the creation of adapting rules in novel adaptive DE algorithms.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

2751-2756

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.P. R. Storn, Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, in, ICSI, 1995.

Google Scholar

[2] P.N.S. Swagatam Das, Differential Evolution: A Survey of the State-of-the-Art, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 15 (2011) 28.

Google Scholar

[3] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, Ieee T Evolut Comput, 10 (2006) 646-657.

DOI: 10.1109/tevc.2006.872133

Google Scholar

[4] A. Ghosh, S. Das, A. Chowdhury, R. Gini, An improved differential evolution algorithm with fitness-based adaptation of the control parameters, Inform Sciences, 181 (2011) 3749-3765.

DOI: 10.1016/j.ins.2011.03.010

Google Scholar

[5] W.Y. Gong, Z.H. Cai, L.X. Jiang, Enhancing the performance of differential evolution using orthogonal design method, Appl Math Comput, 206 (2008) 56-69.

DOI: 10.1016/j.amc.2008.08.053

Google Scholar

[6] S.M. Islam, S. Das, S. Ghosh, S. Roy, P.N. Suganthan, An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 42 (2012) 482-500.

DOI: 10.1109/tsmcb.2011.2167966

Google Scholar

[7] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Comput, 9 (2005) 448-462.

DOI: 10.1007/s00500-004-0363-x

Google Scholar

[8] A. Salman, A.P. Engelbrecht, M.G.H. Omran, Computing, artificial intelligence and information management - Empirical analysis of self-adaptive differential evolution, Eur J Oper Res, 183 (2007) 785-804.

DOI: 10.1016/j.ejor.2006.10.020

Google Scholar

[9] D. Zaharie, Control of population diversity and adaptation in differential evolution algorithms, in: Proceedings of the 9th International Conference on Soft Computing, Brno, 2003, pp.41-46.

Google Scholar

[10] D. Zaharie, D. Petcu, Adaptive Pareto differential evolution and its parallelization, Lect Notes Comput Sc, 3019 (2003) 261-268.

DOI: 10.1007/978-3-540-24669-5_34

Google Scholar

[11] J.Q. Zhang, A.C. Sanderson, JADE: Adaptive Differential Evolution With Optional External Archive, Ieee T Evolut Comput, 13 (2009) 945-958.

DOI: 10.1109/tevc.2009.2014613

Google Scholar

[12] S.Z. Zhao, P.N. Suganthan, S. Das, Self-adaptive Differential Evolution with Modified Multi-Trajectory Search for CEC'2010 Large Scale Optimization, Lect Notes Comput Sc, 6466 (2010) 1-10.

DOI: 10.1007/978-3-642-17563-3_1

Google Scholar

[13] V.L. Huang, S.Z. Zhao, R. Mallipeddi, P.N. Suganthan, Multi-objective Optimization Using Self-adaptive Differential Evolution Algorithm, 2009 IEEE Congress on Evolutionary Computation, Vols 1-5, (2009) 190-194.

DOI: 10.1109/cec.2009.4982947

Google Scholar

[14] R. Mallipeddi, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl Soft Comput, 11 (2011) 1679-1696.

DOI: 10.1016/j.asoc.2010.04.024

Google Scholar

[15] Q.K. Pan, P.N. Suganthan, L. Wang, L. Gao, R. Mallipeddi, A differential evolution algorithm with self-adapting strategy and control parameters, Comput Oper Res, 38 (2011) 394-408.

DOI: 10.1016/j.cor.2010.06.007

Google Scholar

[16] Y. Wang, Z.X. Cai, Q.F. Zhang, Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters, Ieee T Evolut Comput, 15 (2011) 55-66.

DOI: 10.1109/tevc.2010.2087271

Google Scholar

[17] Z.Y. Yang, K. Tang, X. Yao, Scalability of generalized adaptive differential evolution for large-scale continuous optimization, Soft Comput, 15 (2011) 2141-2155.

DOI: 10.1007/s00500-010-0643-6

Google Scholar

[18] K.P. R. Storn, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11 (1997) 341-359.

Google Scholar

[19] S. Das, P.N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, Ieee T Evolut Comput, 15 (2011) 27-54.

Google Scholar

[20] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential Evolution Using a Neighborhood-Based Mutation Operator, Ieee T Evolut Comput, 13 (2009) 526-553.

DOI: 10.1109/tevc.2008.2009457

Google Scholar

[21] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization, Ieee T Evolut Comput, 13 (2009) 398-417.

DOI: 10.1109/tevc.2008.927706

Google Scholar

[22] P.N.S. J.J. Liang, K. Deb, Novel composition test functions for numerical global optimization, in: IEEE Swarm Intelligence Symposium, Pasadena, California, 2005, p.68–75.

DOI: 10.1109/sis.2005.1501604

Google Scholar

[23] C.X.M. K.T. Fang, Orthogonal and Uniform Design, Science Press, Beijing, China, 2001.

Google Scholar