Multi-Objective Optimization Methods of Plate Solid Oxide Fuel Cell's Temperature System

Article Preview

Abstract:

The working environment of Solid Oxide Fuel Cells (SOFC) includes high temperature and speedy chemical reaction. The improved control structure and optimization method for the simplified temperature system of SOFC are proposed in this paper. It designs a real-time cascade PID controller for dynamic reactive temperatures of SOFC which vary significantly as the external disturbance or operating mode changes. Considering the efficiency of fuel utility and output power are incommensurable multiple goals, some fuzzy-based rules are introduced to solve these complex multi-objective optimization problems. The experiments’ result shows that the controllers have good robustness and quickness when the system is under the mode with external disturbances.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

728-733

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Williams MC, Strakey J, Sudoval W. U.S. DOE Fossil Energy Fuel Cells Program. Journal of Power Sources, 2006(159): 1241-1247.

DOI: 10.1016/j.jpowsour.2005.12.085

Google Scholar

[2] A. Kirubakaran, Shailendra Jain, R.K. Nema. A Review on Fuel Cell Technologies and Power Electronic Interface. Renewable and Sustainable Energy Reviews. 2009(13): 2430-1440

DOI: 10.1016/j.rser.2009.04.004

Google Scholar

[3] Surdoval, W.. Clean Economic Energy in a Carbon Challenged World. In 10th Annual Solid State Energy Conversion Alliance (SECA) Workshop. (2009)

Google Scholar

[4] H.B. Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control. Journal of Process Control, 2011, 21(10): 1426–1437.

DOI: 10.1016/j.jprocont.2011.06.017

Google Scholar

[5] Achenbach, E.. Three-dimensional and time dependent Simulation of a Planar Solid Oxide Fuel Cell Stack. Journal of Power Sources. 1994(49): 333–348.

DOI: 10.1016/0378-7753(93)01833-4

Google Scholar

[6] Ota, T., Koyama, M., Wen, C.J., Yamada, K., Takahashi, H. Object-based Modeling of SOFC System: Dynamic Behavior of Micro-tube SOFC. Journal of Power Sources, 2003, 118(1-2): 430–439.

DOI: 10.1016/s0378-7753(03)00109-5

Google Scholar

[7] Qi, Y., H. B., Luo, J. Dynamic Modeling of a Finite Volume of Solid Oxide Fuel Cell: The Effect of Transport Dynamics. Chemical Engineering Science, 2006, 61(18): 6057–6076.

DOI: 10.1016/j.ces.2006.05.030

Google Scholar

[8] Fuel Cell Handbook, Edition 7. US Department of Energy, 2004.

Google Scholar

[9] Xue, X., Tang, J., Sammes, N., Du, Y. Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects. Journal of Power Sources, 2005, 142(1-2): 211–222.

DOI: 10.1016/j.jpowsour.2004.11.023

Google Scholar

[10] Iora, P., Aguiar, P., Adjiman, C.S., Brandon, N.P.. Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical and flow properties. Steady-state and dynamic analysis. Chemical Engineering Science, 2005(60): 2963–2975.

DOI: 10.1016/j.ces.2005.01.007

Google Scholar

[11] VanderSteen, J. Pharoah, J.. Modeling radiation heat transfer with participating media in solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 2006, 3(1): 62–67.

DOI: 10.1115/1.2134738

Google Scholar

[12] P. Panda, C.-C. Yu, H.-P. Huang. PID tuning rules for SOPDT systems: review and some new results. ISA Transactions, 2004(43): 749-758.

DOI: 10.1016/s0019-0578(07)60037-8

Google Scholar

[13] C. C., K. J., Q. G. Wang. Relay feedback auto-tuning of process controllers-a tutorial review. Journal of Process Control, 2002 (12): 143-162.

DOI: 10.1016/s0959-1524(01)00025-7

Google Scholar

[14] K. J. Astrom, T. Hagglund. Revisiting the ziegler-nichols step response method for PID control. Journal of Process Control. 2004(14): 635-650.

DOI: 10.1016/j.jprocont.2004.01.002

Google Scholar

[15] J. G. Ziegler, N. B. Nichols. Optimum settings for automatic controllers. Transactions of the ASME. 1942(64): 759-768.

Google Scholar

[16] K. J., T. Hagglund. PID Controller: Theory, Design, and Tuning, 2nd edition, Instrument Society of America, NC, 1995.

Google Scholar

[17] G. H., G. A.. Theoretical consideration of retarded control. Transactions of the ASME. 1953 (75): 827-834.

Google Scholar

[18] B. D., W. L.. Tuning PI controllers for integrator/dead time processes. Industrial and Engineering Chemistry Research. 1992, 31(11): 2625-2628.

DOI: 10.1021/ie00011a029

Google Scholar

[19] A. Fadaei, K. Salahshoor. Design and implementation of a new fuzzy PID controller for networked control systems. ISA Transactions. 2008(47): 351-361.

DOI: 10.1016/j.isatra.2008.07.003

Google Scholar