[1]
Williams MC, Strakey J, Sudoval W. U.S. DOE Fossil Energy Fuel Cells Program. Journal of Power Sources, 2006(159): 1241-1247.
DOI: 10.1016/j.jpowsour.2005.12.085
Google Scholar
[2]
A. Kirubakaran, Shailendra Jain, R.K. Nema. A Review on Fuel Cell Technologies and Power Electronic Interface. Renewable and Sustainable Energy Reviews. 2009(13): 2430-1440
DOI: 10.1016/j.rser.2009.04.004
Google Scholar
[3]
Surdoval, W.. Clean Economic Energy in a Carbon Challenged World. In 10th Annual Solid State Energy Conversion Alliance (SECA) Workshop. (2009)
Google Scholar
[4]
H.B. Solid Oxide Fuel Cell: Perspective of Dynamic Modeling and Control. Journal of Process Control, 2011, 21(10): 1426–1437.
DOI: 10.1016/j.jprocont.2011.06.017
Google Scholar
[5]
Achenbach, E.. Three-dimensional and time dependent Simulation of a Planar Solid Oxide Fuel Cell Stack. Journal of Power Sources. 1994(49): 333–348.
DOI: 10.1016/0378-7753(93)01833-4
Google Scholar
[6]
Ota, T., Koyama, M., Wen, C.J., Yamada, K., Takahashi, H. Object-based Modeling of SOFC System: Dynamic Behavior of Micro-tube SOFC. Journal of Power Sources, 2003, 118(1-2): 430–439.
DOI: 10.1016/s0378-7753(03)00109-5
Google Scholar
[7]
Qi, Y., H. B., Luo, J. Dynamic Modeling of a Finite Volume of Solid Oxide Fuel Cell: The Effect of Transport Dynamics. Chemical Engineering Science, 2006, 61(18): 6057–6076.
DOI: 10.1016/j.ces.2006.05.030
Google Scholar
[8]
Fuel Cell Handbook, Edition 7. US Department of Energy, 2004.
Google Scholar
[9]
Xue, X., Tang, J., Sammes, N., Du, Y. Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects. Journal of Power Sources, 2005, 142(1-2): 211–222.
DOI: 10.1016/j.jpowsour.2004.11.023
Google Scholar
[10]
Iora, P., Aguiar, P., Adjiman, C.S., Brandon, N.P.. Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical and flow properties. Steady-state and dynamic analysis. Chemical Engineering Science, 2005(60): 2963–2975.
DOI: 10.1016/j.ces.2005.01.007
Google Scholar
[11]
VanderSteen, J. Pharoah, J.. Modeling radiation heat transfer with participating media in solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 2006, 3(1): 62–67.
DOI: 10.1115/1.2134738
Google Scholar
[12]
P. Panda, C.-C. Yu, H.-P. Huang. PID tuning rules for SOPDT systems: review and some new results. ISA Transactions, 2004(43): 749-758.
DOI: 10.1016/s0019-0578(07)60037-8
Google Scholar
[13]
C. C., K. J., Q. G. Wang. Relay feedback auto-tuning of process controllers-a tutorial review. Journal of Process Control, 2002 (12): 143-162.
DOI: 10.1016/s0959-1524(01)00025-7
Google Scholar
[14]
K. J. Astrom, T. Hagglund. Revisiting the ziegler-nichols step response method for PID control. Journal of Process Control. 2004(14): 635-650.
DOI: 10.1016/j.jprocont.2004.01.002
Google Scholar
[15]
J. G. Ziegler, N. B. Nichols. Optimum settings for automatic controllers. Transactions of the ASME. 1942(64): 759-768.
Google Scholar
[16]
K. J., T. Hagglund. PID Controller: Theory, Design, and Tuning, 2nd edition, Instrument Society of America, NC, 1995.
Google Scholar
[17]
G. H., G. A.. Theoretical consideration of retarded control. Transactions of the ASME. 1953 (75): 827-834.
Google Scholar
[18]
B. D., W. L.. Tuning PI controllers for integrator/dead time processes. Industrial and Engineering Chemistry Research. 1992, 31(11): 2625-2628.
DOI: 10.1021/ie00011a029
Google Scholar
[19]
A. Fadaei, K. Salahshoor. Design and implementation of a new fuzzy PID controller for networked control systems. ISA Transactions. 2008(47): 351-361.
DOI: 10.1016/j.isatra.2008.07.003
Google Scholar