Fatigue Strength and Life Estimation Methods Using Critical Distance Stress Theory

Article Preview

Abstract:

Generallythe critical distance stress theory was applied for the fatigue limitestimation of general structures. In thismethod, it needs only two parameters, fatiguelimit of smooth specimen (σw0), and threshold stress intensityfactor range (∆Kth). In this paper we extended this method for theestimation of low cycle fatigue lifetoo. In this improvement wedefine the critical distance (rc’) on static strength conditions,which is calculated using ultimate tensile strength (σB) andfracture toughness (KIC), in addition to the critical distance onfatigue limit condition (rc). Then the critical distances of any lowcycle fatigue conditions can be calculated by interpolation of criticaldistance on fatigue limit (rc) with critical distance on staticstrength (rc’). By unifying these low cycle fatigue life estimationmethod with high cycle fatigue limit estimation method we can estimate the fullrange fatigue life easily. And to confirm the availabilityof this estimation method we perform the fatigue test for circlehole specimens, sharp V notch specimens andfretting fatigue specimens.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

853-863

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Taylor, D., "Geometrical Effects in Fatigue: A Unifying Theoretical Model," Int. J. Fatigue, 21, 413-420 (1999).

DOI: 10.1016/s0142-1123(99)00007-9

Google Scholar

[2] Gassner, E., The value of surface-protective media against fretting corrosion on the basis of fatigue strength tests, Laboratorium fur Betriebsfestigkeit TM19/67, 1967.

Google Scholar

[3] Buch, A., Fatigue and fretting of pin-lug joints with and without interference fit, Wear, 1977, 43, p.9.

DOI: 10.1016/0043-1648(77)90038-2

Google Scholar

[4] Hattori, T., Kawai, S., Okamoto, N. and Sonobe, T., Torsional fatigue strength of a shrink- fitted shaft, Bulletin of the JSME, 1981, 24, 197, p.1893.

DOI: 10.1299/jsme1958.24.1893

Google Scholar

[5] Cornelius, E. A. and Contag, D., Die Festigkeits-minderung von Wellen unter dem Einfluβ von Wellen-Naben- Verbindungen durch Lotung, Nut und Paβ feder, Kerbverzahnungen und Keilprofile bei wechselnder Drehung, Konstruktion, 1962, 14, 9, p.337.

DOI: 10.1007/978-3-322-87704-8_3

Google Scholar

[6] Hattori, T., Sakata, S. and Ohnishi, H., Slipping behavior and fretting fatigue in the disk/blade dovetail region, Proceedings, 1983 Tokyo Int. Gas Turbine Cong., 1984, p.945.

Google Scholar

[7] Johnson, R. L. and Bill, R. C., Fretting in aircraft turbine engines, NASA TM X-71606, 1974.

Google Scholar

[8] Hattori, T., Nakamura, M. and Watanabe, T., Fretting fatigue analysis by using fracture mechanics, ASME Paper No.84-WA/DE-10, 1984.

Google Scholar

[9] King, R. N .and Lindley, T. C., Fretting fatigue in a 3 1/2 Ni-Cr-Mo-V rotor steel, Proc. ICF5, 1980, p.631.

Google Scholar

[10] Okamoto N. and Nakazawa, M., Finite element incremental contact analysis with various frictional conditions, Int. J. Numer. Methods Eng, 1979 14, p.377.

DOI: 10.1002/nme.1620140304

Google Scholar

[11] Hattori, T., Sakata, H. and Watanabe, T., A stress singularity parameter approach for evaluating adhesive and fretting strength, ASME Book No. G00485, MD-vol.6, 1988, p.43

Google Scholar

[12] Hattori, T. and Nakamura, N., Fretting fatigue evaluation using stress singularity parameters at contact edges, Fretting Fatigue, ESIS Publication 18, 1994, p.453.

Google Scholar

[13] Hattori, T. et al., Fretting fatigue analysis using fracture mechanics, JSME Int. J, Ser. l, 1988, 31, p.100.

Google Scholar

[14] Hattori, T., Nakamura, M. and Watanabe, T., Simulation of fretting fatigue life by using stress singularity parameters and fracture mechanics, Tribology International, 2003, 36, p.87.

DOI: 10.1016/s0301-679x(02)00141-x

Google Scholar

[15] Suresh, S., Fatigue of Materials 2nd Edition, Cambridge University Press, 1998, p.469

Google Scholar

[16] Goryacheva, I. G., Rajeev, P. T. and Farris, T. N., Wear in partial slip contact, ASME J. of Tribology, 2001, 123, 4, p.848

DOI: 10.1115/1.1338476

Google Scholar

[17] Hattori, T., Yamashita, M. and Nishimura, N., Fretting fatigue strength and life estimation in high cycle region considering the fretting wear process, JSME International Journal, 2005, 48, 4, pp.246-250.

DOI: 10.1299/jsmea.48.246

Google Scholar

[18] Hattori, T., Nakamura, Nishimura, N. and Yamashita, M., Fretting fatigue strength estimation considering the fretting wear process, Tribology International, 2006, 39, pp.1100-1105.

DOI: 10.1016/j.triboint.2006.02.049

Google Scholar