[1]
Taylor, D., "Geometrical Effects in Fatigue: A Unifying Theoretical Model," Int. J. Fatigue, 21, 413-420 (1999).
DOI: 10.1016/s0142-1123(99)00007-9
Google Scholar
[2]
Gassner, E., The value of surface-protective media against fretting corrosion on the basis of fatigue strength tests, Laboratorium fur Betriebsfestigkeit TM19/67, 1967.
Google Scholar
[3]
Buch, A., Fatigue and fretting of pin-lug joints with and without interference fit, Wear, 1977, 43, p.9.
DOI: 10.1016/0043-1648(77)90038-2
Google Scholar
[4]
Hattori, T., Kawai, S., Okamoto, N. and Sonobe, T., Torsional fatigue strength of a shrink- fitted shaft, Bulletin of the JSME, 1981, 24, 197, p.1893.
DOI: 10.1299/jsme1958.24.1893
Google Scholar
[5]
Cornelius, E. A. and Contag, D., Die Festigkeits-minderung von Wellen unter dem Einfluβ von Wellen-Naben- Verbindungen durch Lotung, Nut und Paβ feder, Kerbverzahnungen und Keilprofile bei wechselnder Drehung, Konstruktion, 1962, 14, 9, p.337.
DOI: 10.1007/978-3-322-87704-8_3
Google Scholar
[6]
Hattori, T., Sakata, S. and Ohnishi, H., Slipping behavior and fretting fatigue in the disk/blade dovetail region, Proceedings, 1983 Tokyo Int. Gas Turbine Cong., 1984, p.945.
Google Scholar
[7]
Johnson, R. L. and Bill, R. C., Fretting in aircraft turbine engines, NASA TM X-71606, 1974.
Google Scholar
[8]
Hattori, T., Nakamura, M. and Watanabe, T., Fretting fatigue analysis by using fracture mechanics, ASME Paper No.84-WA/DE-10, 1984.
Google Scholar
[9]
King, R. N .and Lindley, T. C., Fretting fatigue in a 3 1/2 Ni-Cr-Mo-V rotor steel, Proc. ICF5, 1980, p.631.
Google Scholar
[10]
Okamoto N. and Nakazawa, M., Finite element incremental contact analysis with various frictional conditions, Int. J. Numer. Methods Eng, 1979 14, p.377.
DOI: 10.1002/nme.1620140304
Google Scholar
[11]
Hattori, T., Sakata, H. and Watanabe, T., A stress singularity parameter approach for evaluating adhesive and fretting strength, ASME Book No. G00485, MD-vol.6, 1988, p.43
Google Scholar
[12]
Hattori, T. and Nakamura, N., Fretting fatigue evaluation using stress singularity parameters at contact edges, Fretting Fatigue, ESIS Publication 18, 1994, p.453.
Google Scholar
[13]
Hattori, T. et al., Fretting fatigue analysis using fracture mechanics, JSME Int. J, Ser. l, 1988, 31, p.100.
Google Scholar
[14]
Hattori, T., Nakamura, M. and Watanabe, T., Simulation of fretting fatigue life by using stress singularity parameters and fracture mechanics, Tribology International, 2003, 36, p.87.
DOI: 10.1016/s0301-679x(02)00141-x
Google Scholar
[15]
Suresh, S., Fatigue of Materials 2nd Edition, Cambridge University Press, 1998, p.469
Google Scholar
[16]
Goryacheva, I. G., Rajeev, P. T. and Farris, T. N., Wear in partial slip contact, ASME J. of Tribology, 2001, 123, 4, p.848
DOI: 10.1115/1.1338476
Google Scholar
[17]
Hattori, T., Yamashita, M. and Nishimura, N., Fretting fatigue strength and life estimation in high cycle region considering the fretting wear process, JSME International Journal, 2005, 48, 4, pp.246-250.
DOI: 10.1299/jsmea.48.246
Google Scholar
[18]
Hattori, T., Nakamura, Nishimura, N. and Yamashita, M., Fretting fatigue strength estimation considering the fretting wear process, Tribology International, 2006, 39, pp.1100-1105.
DOI: 10.1016/j.triboint.2006.02.049
Google Scholar