The Roles of Arbuscular Mycorrhizal Fungus Glomus mosseae and Festuca arundinacea in Phytostabilization of Lead/Zinc Tailings

Article Preview

Abstract:

A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth, metal accumulation and translocation of Festuca arundinacea for the phytostabilization of lead/zinc tailings in this study. The results showed that mycorrhizal inoculation substantially enhanced the growth of F. arundinacea and significantly decreased Pb and Cd concentrations in shoots. The bioconcentration factor and translocation factor values of Pb, Zn, Cu and Cd of F. arundinacea were much lower than 1, and inoculation further inhibited Pb, Cu and Cd translocation from roots into shoots, while enhanced Zn translocation. These results suggested that F. arundinacea inoculated with mycorrhizal might be a potential measure for revegetation of Pb/Zn tailings, especial for Pb, Cu and Cd stabilization, in northern China.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-250

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.O. Mendez and R.M. Maier. Rev. Environ. Sci. Biotech., Vol. 7 (2008), pp.47-59

Google Scholar

[2] M. Wong. Chemosphere, Vol. 50 (2003), pp.775-780

Google Scholar

[3] C. Becerra-Castro, C. Monterroso, A. Prieto-Fernández, et al. J. Hazard. Mater., Vol. 217-218 (2012), pp.350-359

Google Scholar

[4] M.O. Mendez and R.M. Maier. Environ. Health Persp., Vol. 116 (2008), p.278

Google Scholar

[5] Z. Ye, W. Shu, Z. Zhang, et al. Chemosphere, Vol. 47 (2002), pp.1103-1111

Google Scholar

[6] D. Fernández, A. Roldán, R. Azcón, et al. Microb Ecol., Vol. 63 (2012), pp.794-803

Google Scholar

[7] A. Vivas, A. Marulanda, M. Gómez, et al. Soil Biol. Biochem., Vol. 35 (2003), pp.987-996

Google Scholar

[8] M.C. Rillig and P.D. Steinberg. Soil Biol. Biochem., Vol. 34 (2002), pp.1371-1374

Google Scholar

[9] P. Christie, X. Li and B. Chen. Plant Soil, Vol. 261 (2004), pp.209-217

Google Scholar

[10] L. Carrasco, R. Azcón, J. Kohler, et al. Sci. Total Environ., Vol. 409 (2011), pp.1205-1209

Google Scholar

[11] J. Phillips and D. Hayman. T. Brit. Mycol. Soc., Vol. 55 (1970), pp.158-161

Google Scholar

[12] A. Pérez-de-Mora, P. Burgos, E. Madejón, et al. Soil Biol. Biochem., Vol. 38 (2006), pp.327-341

Google Scholar

[13] Y.X. Chen, J.Y. Shi, W.D. Zhang, et al. Plant Soil, Vol. 261 (2004), pp.117-125

Google Scholar

[14] B. Chen, X. Tang, Y. Zhu, et al. Sci. China Ser. C, Vol. 48 (2005), pp.156-164

Google Scholar

[15] B. Chen, Y.G. Zhu, J. Duan, et al. Environ. Pollut, Vol. 147 (2007), pp.374-380

Google Scholar

[16] A. Vivas, A. Vörös, B. Biró, et al. Appl. Soil Ecol., Vol. 24 (2003), pp.177-186

Google Scholar

[17] D.A. Wardle, R.D. Bardgett, J.N. Klironomos, et al. Science, Vol. 304 (2004), pp.1629-1633

Google Scholar

[18] E.J. Joner, R. Briones and C. Leyval. Plant Soil, Vol. 226 (2000), pp.227-234

Google Scholar

[19] V. Göhre and U. Paszkowski. Planta, Vol. 223 (2006), pp.1115-1122

Google Scholar

[20] A. Gaur and A. Adholeya. Curr. Sci., Vol. 86 (2004), pp.528-534

Google Scholar

[21] R. Malcová, M. Vosátka and M. Gryndler. Appl. Soil Ecol., Vol. 23 (2003), pp.55-67

Google Scholar

[22] M. Kaldorf, A. Kuhn, W. Schröder, et al. J. Plant Physiol., Vol. 154 (1999), pp.718-728

Google Scholar