Conversion of Waste Paper Sludge into Heavy Metal Adsorbent Using Sulfur Impregnation

Article Preview

Abstract:

During the manufacture of recycled paper, paper sludge is discharged as an industrial waste. The amount of sludge discharged from manufacturing plants increases annually. In this study, the organic constituents, such as cellulose, in the sludge were converted into carbonaceous heavy metal absorbents using sulfur treatment. Paper sludge was washed with 5 M HCl solution to remove inorganic content, and then immersed in 1 M K2S solution for 24 h. After immersion, the sample was heated at 800 °C for 1 h under N2 atmosphere, and then cooled to room temperature to obtain the product. The sludge was mainly composed of inorganic content, such as calcite, kaolinite and talc, and organic content. Calcite was removed with acid washing and sulfur was impregnated into the sludge by immersing it into the K2S solution. The product with sulfur impregnation indicated higher removal abilities for lead and nickel than those without sulfur impregnation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

759-764

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. F. Freeman: Standard Handbook of Hazardous Waste Treatment and Disposal (McGraw-Hill, New York, 1989).

Google Scholar

[2] N. P. Cheremisinoff: Handbook of Water and Wastewater Treatment Technology (Marcel Dekker, New York, 1994).

Google Scholar

[3] M. Smisek and S. Cerny: Active Carbon Manufacture, Properties and Application (Elsevier, Amsterdam, 1970).

Google Scholar

[4] H. Jankowska, A. Swiatkowoski and J. Choma: Active Carbon (Ellis Horwood Limited and Wydawnictwa Nukowo-Technicze, Poland, 1991).

Google Scholar

[5] R. C. Bansal, J. B. Donnet and F. Stoeckli: Active Carbon (Marcel Dekker, New York, 1998).

Google Scholar

[6] J. J. Pis, T. A. Centero, M. Mahamud, A. B. Fuertes, J. B. Parra, J. A. Pajares et al.: Fuel Process. Technol. Vol. 47 (1996) p.119–138.

Google Scholar

[7] N. Adhoum and L. Monser: Chem. Eng. Process. Vol. 41 (2002) p.17–21.

Google Scholar

[8] N. P. Cheremisinoff and F. Ellerbusch: Carbon Adsorption Handbook (Ann Arbor Science, Michigan, 1980).

Google Scholar

[9] R. G. Pearson: J. Am. Chem. Soc. Vol. 85 (1963) p.3533–3539.

Google Scholar

[10] R. G. Pearson: J. Chem. Educ. Vol. 64 (1987) p.561–567.

Google Scholar

[11] C. Valenzuela-Calahorro, A. Macias-Garcia, A. Bernalte-Garcia and V. Gomez-Serrano: Carbon Vol. 28 (1990) p.321–335.

Google Scholar

[12] A. Macias-Garcia, C. Valenzuela-Calahorro, V. Gomez- Serrano and A. Espinosa-Mansilla: Carbon Vol. 31 (1993) p.1249–1255.

Google Scholar

[13] A. Macias-Garcia, C. Valenzuela-Calahorro, A. Espinosa-Mansilla and V. Gomez-Serrano: An. Quim. (1995) p.547–552.

Google Scholar

[14] V. Gomez-Serrano, A. Macias-Garcia, A. Espinosa-Mansilla and A. Valenzuela-Calahorro: Water Res. Vol. 32 (1998) p.1–4.

DOI: 10.1016/s0043-1354(97)00203-0

Google Scholar

[15] K. A. Krishnan and T. S. Anirudhan: J. Hazard. Mater. Vol. B92 (2002) p.161–183.

Google Scholar

[16] K. Sugawara, T. Wajima, T. Katoand T. Sugawara: Ars Separatoria Acta Vol. 5 (2007) p.88–98.

Google Scholar

[17] T. Wajima, K. Murakami and K. Sugawara: Energy Sources A Vol. 32 (2009) pp.442-449.

Google Scholar

[18] T. Wajima, K. Murakami, T. Kato and K. Sugawara: J. Environ. Sci. Vol. 21(12) (2009) pp.1730-1734.

Google Scholar

[19] T. Wajima and K. Sugawara: Fuel Process. Technol. Vol. 92 (2011) pp.1322-1327.

Google Scholar