Chemical Detection of SF6 Decomposition Products Generated by AC and DC Corona Discharges Using a Carbon Nanotube Gas Sensor

Article Preview

Abstract:

This paper describes application of carbon nanotube (CNT) gas sensor to chemical detection of sulfur hexafluoride (SF6) decomposition products generated by AC or DC corona discharge, aiming to develop a new diagnosis method of gas-insulated switchgear (GIS) filled with high pressure SF6 gas. Currently, most of GIS are designed and operated for conventional high voltage AC (HVAC) power transmission lines. Moreover, in recent years, the electrical power industry has shown a trend shifting from HVAC to high voltage DC power transmission, which has many advantages such as high power capacity and low power loss.This technological trend motivated us to explore and expand the application of CNT gas sensor to detection of SF6 decomposition products generated by AC and DC corona discharges. It was found that the CNT gas sensor exhibited significant response to AC and DC corona discharges and its dependency on the DC voltage polarity. In order to elucidate the mechanism of the polarity effect, SF6 decomposition products were analyzed by Fourier transform infrared spectroscopy as well as using a gas detection tube. Based on comparison between the polarity effects on the CNT sensor response and the decomposition products, a possible contribution of hydrogen fluoride to the CNT gas sensor response was suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

909-914

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.A. Metwally: J. Electric Power Syst. Res., Vol. 69 (2004), p.25

Google Scholar

[2] A. Derdouri, J. Casanovas, R. Hergli, R. Grob and J. Mathieu: J. Appl. Phys., Vol. 65(1989), p.1852

Google Scholar

[3] H.M. Heise, R. Kurte, P. Fischer, D. Klockow and P.R. Janissek: Fresenius J. Anal. Chem., Vol. 358 (1997), p.793

Google Scholar

[4] J. Suehiro, G. Zhou and M. Hara: Sens. Actuators B, Vol. 105 (2005), p.164

Google Scholar

[5] W. Ding, R. Hayashi, K. Ochi, J. Suehiro, G. K. Imasaka, M. Hara, N. Sano, E. Nagao and T. Minagawa: IEEE Trans. Dielectr. Electr. Insul., Vol. 13 (2006), p.1200

DOI: 10.1109/tdei.2006.258191

Google Scholar

[6] W. Ding, R. Hayashi, J. Suehiro, G. Zhou, K. Imasaka and M. Hara: IEEE Trans. Dielectr. Electr. Insul., Vol. 13 (2006), p.353

Google Scholar

[7] W. Ding, K. Ochi, J. Suehiro, K. Imasaka, R. Hayashi and M. Hara: IEEE Trans. Dielectr. Electr. Insul., Vol. 14 (2007), p.718

DOI: 10.1109/tdei.2007.369536

Google Scholar

[8] J. Suehiro, G. Zhou and M. Hara: J. Phys. D: Appl. Phys., Vol. 36 (2003), p. L109

Google Scholar

[9] X. Zhang, W. Liu, J. Tang and P. Xiao: IEEE Trans. Dielectr. Electr. Insul., Vol. 17 (2010), p.833

Google Scholar

[10] H. Kang, S. Lim, N. Park, K. Chun and S. Baik: Sens. Actuators B, Vol. 147 (2010), p.316

Google Scholar

[11] N. Wei, W. Ding, Y. Zhu, C. Su and J. Suehiro: 15th AsianConf. Electr. Discharge, Xi'an, China, Paper No. B197(2010)

Google Scholar

[12] W. Breuer, D. Povh, D. Retzmann and E. Teltsch: 16th Conf. Electric Power Supply Industry, Mumbai, India(2006)

Google Scholar

[13] Y. Martin, .Z. Li, T. Tsutsumi, K. Imasaka, J. Suehiro and S. Ohtsuka:Int'l. Conf. Condition Monitoring and Diagnosis (CMD), Tokyo, Japan, Paper No. P1-58(2010)

Google Scholar

[14] Y. Martin, Z. Li, T. Tsutsumi, J. Suehiro, K. Imasaka and S. Ohtsuka: Proc. of 2010 IEEE Region 10 Conference (TENCON), Fukuoka, Japan (2010), p.663

DOI: 10.1109/tencon.2010.5686640

Google Scholar

[15] R.J. van Brunt and D. Leep: J. Appl. Phys., Vol. 52 (1981), p.6588

Google Scholar

[16] J. Suehiro, G. Zhou, H. Imakiire, W. Ding and M. Hara: Sens. Actuators B, Vol. 108 (2005),p.398

Google Scholar