Epitaxial Graphene Growth on 6H-SiC (0001) Substrate by Confinement Controlled Sublimation of Silicon Carbide

Article Preview

Abstract:

Large area epitaxial graphene (EG) layers are synthesized on 6H-SiC (0001) by annealing at 1500 °C for 5 min in a closed graphite chamber at low vacuum of 10-3 mbar and its 2D band in Raman spectra can be satisfactorily fitted by a single Lorentzian. From Raman spectroscopy, measurements indicate that too high growth temperature is to the disadvantage of the formation of graphene. The results of atomic force microscope (AFM) and field-emission scanning electronic microscope (FE-SEM) reveal the surface morphology of graphene is related with its growth temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-65

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G and Reifen-berger R. Applied Physics Letters 92(2008) 092102.

DOI: 10.1063/1.2889959

Google Scholar

[2] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P. Science 327(2010) 662.

DOI: 10.1126/science.1184289

Google Scholar

[3] Hass J, de Heer W A and Conrad E H. Journal of Physics: Condensed Matter 20(2008) 323202 %.

DOI: 10.1088/0953-8984/20/32/323202

Google Scholar

[4] Starke U and Riedl C, Journal of Physics: Condensed Matter, 2009, 21,134016.

Google Scholar

[5] Premlal B, Cranney M, Vonau F, Aubel D, Casterman D, de Souza M M and Simon L. Applied Physics Letters, 94(2009) 263115.

DOI: 10.1063/1.3168502

Google Scholar

[6] Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov, J.Ro¨hrl, Rotenberg S A E, Schmid A K, Waldmann D, Weber H B and Seyller T. Nature Materials 8 (2009) 203 %.

DOI: 10.1038/nmat2382

Google Scholar

[7] Tedesc J L, Jernigan G G, Culbertson J C, Hite J K, Yang Y, Daniels K M, Myers-Ward R L, Eddy C R, Robinson J A, Trumbull K A, Wether-ington M T, Campbell P M and Gaskill D K. Applied Physics Letters 96(2010) 222103 %.

DOI: 10.1063/1.3442903

Google Scholar

[8] Tromp R M and Hannon J B. Physical Review Letters 102(2009) 106104%.

DOI: 10.1103/PhysRevLett.102.106104

Google Scholar

[9] Nicolas Camara, Jean-Roch Huntzinger, Gemma Rius, Antoine Tiberj, Narcis Mestres, Francesc Pérez-Murano, Philippe Godignon and Jean Camassel. Physical Review B 80(2009) 125410 %.

DOI: 10.1103/PhysRevB.80.125410

Google Scholar

[10] De Heer W A, Berger C, Ruan M, Sprinkle M, Li X B, Hu Y K, Zhang B, Hankinson J and Conrad E. Proceeding of the National Academy of Sciences 108(2011) 16900 %.

DOI: 10.1073/pnas.1105113108

Google Scholar

[11] Ni Z H, Chen W, Fan X F, Kuo J L, Yu T, Wee A T S and Shen Z X. Physical Review B 77(2008) 115416 %.

DOI: 10.1103/PhysRevB.77.115416

Google Scholar

[12] Spyros N Y, Angeliki S, Nektarios K N, Vassilios D, Fotini R and George N P. Advanced Functional Materials 22(2012) 113-120 %.

DOI: 10.1002/adfm.201101413

Google Scholar

[13] J A Robinson, M Wetherington, J L Tedesco, P M Campbell, X Weng, J Stitt, M A Fanton, E Frantz, D Snyder, B L VanMil, G G Jernigan, R L Myers-Ward, C R Eddy and D K Gaskill. Nano Letters 9(2009) 2873-2876 %.

DOI: 10.1021/nl901073g

Google Scholar