Kinetics of Ferrous Iron Oxidation by Leptospirillum Ferriphilum at Moderate to High Total Iron Concentrations

Article Preview

Abstract:

The effects of temperature, pH and iron concentration on the kinetics of ferrous iron biooxidation by a free suspended culture of Leptospirillum ferriphilum were studied in shake flasks and a circulating bed bioreactor at moderate to high total iron concentration. The kinetic study showed that there are two distinct modes of iron biooxidation: growth associated and non-growth associated, depending on the pH of the medium. There were also distinctive maxima of the effect of temperature and pH on the rate of biooxidation. A kinetic model of the process was proposed, based on an electrochemical-enzymatic model. The proposed model indicates that at moderate to high concentrations (above ~12 g/L), the total iron concentration becomes the single most prominent inhibiting factor.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Pages:

255-258

Citation:

Online since:

May 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. Rawlings, H. Tributsch, G.S. Hansford: Microbiology Vol. 145 (1999), p.5.

Google Scholar

[2] K. Lilova, D. Karamanev, R.L. Flemming, T. Karamaneva: Biotechnol. Bioeng. Vol. 97 (2007), p.308.

DOI: 10.1002/bit.21137

Google Scholar

[3] Y. Uno, T. Kaneeda, S. Yokomizo: Materia 37 (1)52-54.

Google Scholar

[4] J. Gao, J. Xie, J. Ding, J. Kang, H. Cheng, G. Qiu: Trans. Nonferrous Met. Soc. China Vol. 16 (2006), p.1417.

Google Scholar

[5] A. Ter Heijne, H.V.M. Hamelers, C.J.N. Buisman, W.O. Patent 2007, 094, 658 (2007).

Google Scholar

[6] N.J. Coram, D.E. Rawlings: Appl. Environ. Microbiol. Vol. 68 (2002), p.838.

Google Scholar

[7] J. Gao, C. Zhang, X. Wu, H. Wang, G. Qiu: Annals of Microbio. Vol. 57 (2007), p.171.

Google Scholar

[8] B. Ozkaya, P. Nurmi, E. Sahinkaya, A.H. Kaksonen, J.A. Puhakka, in: Advanced Materials Research (Zuerich, Switzerland) (2007), p.465.

Google Scholar

[9] P.D. Franzmann, C.M. Haddad, R.B. Hawkes, W.J. Robertson, J.J. Plumb: Minerals Eng. Vol 18 (2005), p.1304.

Google Scholar

[10] B. Ozkaya, E. Sahinkaya, P. Nurmi, A.H. Kaksonen, J.A. Puhakka: Biotech. Bioeng. Vol. 97 (2007), p.1121.

Google Scholar

[11] J. Petersen, T.V. Ojumu, in: Biohydrometallurgy: From the single cell to the environment, Transtech Publications (2007), p.447.

Google Scholar

[12] M.P. Silverman, D.G. Lundgren: J. Bacteriol. Vol. 77 (1959), p.642.

Google Scholar

[13] D.G. Karamanev, L.N. Nikolov, V. Mamatarkova: Minerals Eng Vol. 15 (2002), p.341.

Google Scholar

[14] N. May, D.E. Ralph, G.S. Hansford: Minerals Eng Vol. 10 (1997), p.1279.

Google Scholar

[15] G. Meruane, C. Salhe, J. Wiertz, T. Vargas: Biotechnol. Bioeng. Vol. 80 (2002), p.280 batch cultivation time, hr 0 20 40 60 80 100.

Google Scholar