Micromagnetic Simulation of CoFe Magnetic Nanorings: Switching Behavior in External Magnetic Field

Article Preview

Abstract:

The magnetization reversal processes of magnetic nanorings (Co50Fe50) with different geometric shapes are investigated. In addition to the expected onion and vortex magnetization states, other metastable states are observed in the magnetization processes. We anatomize the formation and transition of magnetic states, and the propagation and annihilation of domain walls in the reversal process through the dynamic picture. Phase diagrams for the magnetization switching behavior depending on the geometric parameters are presented. The simulation shows that the vortex state is stabilized in thick and narrow rings. The switching field from vortex to onion states turns out to increase with thickness and decrease with width and diameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-84

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger: Science 294 (2001), p.1488

DOI: 10.1126/science.1065389

Google Scholar

[2] R. P. Cowburn and M. E. Welland: Science 287 (2000), p.1466

Google Scholar

[3] G. D. Chaves-O'Flynn, A. D. Kent and D. L. Stein: Phys. Rev. B 79 (2009), p.184421

Google Scholar

[4] J. D. Burton, R. F. Sabirianov, S. S. Jaswal, E. Y. Tsymbal and O. N. Mryasov: Phys. Rev. Lett. 97 (2006), p.077204

Google Scholar

[5] C. A. Ross, M. Farhoud, M. Hwang, H. I. Smith, M. Redjdal and F. B. Humphrey: J. Appl. Phys. 89 (2003), p.1310

Google Scholar

[6] F. Giesen, J. Podbielski, B. Botters, and D. Grundler: Phys. Rev. B 75 (2007), p.184428

Google Scholar

[7] A. K. Patra, A. von Bieren, S. Krzyk, J. Rhensius, L. J. Heyderman, R. Hoffmann and M. Kläui: Phys. Rev. B 82 (2010), p.134447

DOI: 10.1103/physrevb.82.134447

Google Scholar

[8] F. Q. Zhu, G. W. Chern, O. Tchernyshyov, X. C. Zhu, J. G. Zhu, and C. L. Chien: Phys. Rev. Lett. 96 (2006), p.027205

Google Scholar

[9] C. H. Marrows: Adv. Phys. 54 (2005), p.585

Google Scholar

[10] S. S. P. Parkin, M. Hayashi and L. Thomas: Science 320 (2008), p.190

Google Scholar

[11] S. Mitra, A. Mandal, S. Banerjee, A. Datta, S. Bhattacharya, A. Bose and D. Chakravorty: Indian J. Phys 85 (2011), p.649

DOI: 10.1007/s12648-011-0067-x

Google Scholar

[12] J. Mejía-López, D. Altbir, A. H. Romero, X. Batlle, I. V. Roshchin, C. Li and I. K. Schuller: J. Appl. Phys. 100 (2006), p.104319

Google Scholar

[13] W. Zhang and S. Hass: Phys. Rev. B 81 (2010), p.064433

Google Scholar

[14] F. Q. Zhu, D. L. Fan, X. C. Zhu, J. G. Zhu, R. C. Cammarata and C. L. Chien: Adv. Mater. 16 (2004), p.2155

Google Scholar

[15] S. Kim, J. R. Jeong, S. H. Kim, S. C. Shin and S. M. Yang: J. Appl. Phys. 99 (2006), p. 08G310

Google Scholar

[16] W. Jung, F. J. Castano and C. A. Ross: Appl. Phys. Lett. 91 (2007), p.152508

Google Scholar

[17] M. T. Moneck and J. G. Zhu: J. Appl. Phys. 99 (2006), p. 08H709

Google Scholar

[18] H. X. Wei, J. X. He, Z. C. Wen, X. F. Han, W. S. Zhan and S. F. Zhang: Phys. Rev. B 77 (2008), p.134432

Google Scholar

[19] Information on http://math.nist.gov/oommf

Google Scholar