[1]
C.R. Chang : Epidemiology of Colorectal Cancer in Taiwan. Journal of The Chinese Oncology Society, Vol. 24 (2008), pp.143-147.
Google Scholar
[2]
H.Mo. Chiu : Screening Diagnosis and Treatment of Early Colorectal Cancer, Journal of The Chinese Oncology Society, Vol. 24 (2008), pp.148-156.
Google Scholar
[3]
X. Li, S.W. Lai, K. Choyng : Colorectal Cancer. Primary Medical Care & Family Medicine, Vol. 16 (2001), pp.192-198.
Google Scholar
[4]
E. Botteri, S. Iodice, V. Bagnardi, S. Raimondi, A.B. Lowenfels, P. Maisonneuve: Smoking and colorectal cancer: a meta-analysis. JAMA, Dec 17, Vol. 300 (2008), pp.2765-78.
DOI: 10.1001/jama.2008.839
Google Scholar
[5]
Verla-Tebit E, Carmen L, Hoffmeister M, et al. : Cigarette smoking and colorectal cancer risk in Germany: a population-based casecontrol study. Int J Cancer, Vol. 119 (2006), p.630–635.
DOI: 10.1002/ijc.21875
Google Scholar
[6]
S.Y. Hung, C.Y. Chen : Mammographic case base applied for supporting image diagnosis of breast lesion. Expert Syst Appl. Vol. 30 (2006), pp.93-108.
DOI: 10.1016/j.eswa.2005.09.067
Google Scholar
[7]
N. Moon, E. Bullitt, K. Van, G. Gerig: Automatic brain and tumor segmentation. Medical Image Computing and Computer-Assisted Intervention. Vol. 2489 (2002), pp.372-379.
DOI: 10.1007/3-540-45786-0_46
Google Scholar
[8]
Q. Andr, 2008, Digital Signal Processing Using MATLAB, New York: Wiley.
Google Scholar
[9]
S. M. Han, H. J. Lee, J. Y. Choi: Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image, Journal of Digital Imaging, Vol. 21 (2008), pp.121-133.
DOI: 10.1007/s10278-008-9106-3
Google Scholar
[10]
X. Zhang, H. Fujita, M. Kanematsu, X. Zhou, T. Hara, H. Kato, R. Yokoyama, H. Hoshi : Improving the classifycation of Cirrhotic liver by using texture features. Engineering in Medicine and Biology 27th Annual International Conference, (2008), pp.867-70.
DOI: 10.1109/iembs.2005.1616553
Google Scholar
[11]
S.M. Han, H.J. Lee, J.Y. Choi: Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. Journal of Digital Imaging. Vol. 21 (2008), pp.121-133
DOI: 10.1007/s10278-008-9106-3
Google Scholar
[12]
R. M. Haralick, K.. Shanmugam, I. Dinstein, Textural Features for Image Classification, IEEE Trans., Systems, Man, and Cybernetics (1973).
DOI: 10.1109/tsmc.1973.4309314
Google Scholar
[13]
H. Kobatake, M.Murakami, et al., : Computerized detection of malignant tumors on digital mammograms. IEEE Trans.Med.Image, Vol. 18 (1999), pp.369-378.
DOI: 10.1109/42.774164
Google Scholar
[14]
R. Jobanputra, D. A. Clausi: Texture Analysis Using Gaussian Weighted Grey Level Co-occurrence Probabilities, Computer society, (2004), pp.51-57.
DOI: 10.1109/cccrv.2004.1301421
Google Scholar
[15]
J. Han, M. Kamber: Data Mining: Concepts and Techniques, Academic Press, San Francisco, Academic Press, (2001), pp.1-36.
Google Scholar
[16]
P.N. Tan, M. Steinback, and V. Kumar. Introduction to Data Mining, Wesley (2006).
Google Scholar
[17]
E. Bauer, R. Kohavi, "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants", Machine Learning (1999).
Google Scholar