Study on the Nanocomposite Foam of Cardanol Phenolic Resin and Organo-Modified Montmorillonite

Article Preview

Abstract:

In this article, a series of novel phenolic resin modified with cardanol were synthesized. The influence of reaction condition and cardanol content on the structure and properties of phenolic resin was evaluated. The nanocomposite phenolic foam was then prepared by infusing the organo-modified montmorillonite (OMMT) in the synthesis step of cardanol phenolic resin to produce nanocomposite phenolic foams. These phenolic foams were characterized by FTIR, XRD, SEM and TGA. And the mechanical properties and fire performance of these nanocomposite foams were also measured. The results showed that the cardanol component could reduce the crosslink density of phenolic foam and thus improve the mechanical properties; the OMMT platelets were 3~10μm in diameter and 40~50nm in thick. These platelets can exfoliated and dispersed well in the nanocomposite due to the hydrogen-bonding between organo-modifier and phenolic matrix and improve the thermal stability, fire resistance and also the mechanical properties of nanocomposite foam.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 712-715)

Pages:

147-155

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Landrock, A. H. Handbook of plastic foams; New Jersey: Noyes Publications, 1995.

Google Scholar

[2] John, B.; Nair, C.P.R.; Ninan, K.N. Cell. Polym. 2007, 26(4): 229–244.

Google Scholar

[3] Nirmal, C.; Maithi, S.N.; Padmavathi, T.; Vanaja, A.; Rao, R.M.V.G.K. High Perform. Polym. 2006, 18: 57-69.

Google Scholar

[4] Choi, M.H.; Byun, H.Y.; Chung, I. Polymer 2002, 43: 4437-4444.

Google Scholar

[5] Rangari, V. K.; Hassan, T. A.; Zhou, Y.; Mahfuz, H.; Jeelani, S.; Prorok, B. C. J. Appl. Polym. Sci. 2007, 103, 308-314.

DOI: 10.1002/app.25287

Google Scholar

[6] Zhuang, Z. H.; He, B.; Yang, Z. G. Plast. Rubber Compos. 2010, 39(10): 460-464.

Google Scholar

[7] Saz-Orozco, B. D.; Oliet, M.; Alonso, M.V.; Rojo, E.; Rodríguez, F. Compos. Sci. Technol. 2012, 72: 667-674.

Google Scholar

[8] Shen, H.; Nutt, S. Compos. Part A-Appl. S. 2003, 34: 899-906.

Google Scholar

[9] Shen, H.; Lavoie, A. J.; Nutt, S. R. Compos. Part A-Appl. S. 2003, 34: 941-948.

Google Scholar

[10] Desai, A.; Auad, M. L.; Shen, H.; Nutt, S. R. J. Cell. Plast. 2008, 44: 15-36.

Google Scholar

[11] Desai, A.; Nutt, S. R. J. Cell. Plast. 2008, 44: 391-413.

Google Scholar

[12] Desai, A.; Basbagill, J.; Nutt, S. R. J. Cell. Plast. 2010, 46: 461-478.

Google Scholar

[13] Varghese, L.A.; Thachil, E.T. J. Adhes. Sci. Technol. 2004, 18(11): 1217-1224.

Google Scholar

[14] Cardona, F.; Kin-Tak, A. L.; Fedrigo, J. J. Appl. Polym. Sci. 2012, 123: 2131-2139.

DOI: 10.1002/app.34719

Google Scholar

[15] Lin, R.Y.; Chen, B.S.; Suen S.Y. Sep. Sci. Technol. 2010, 46: 409-419.

Google Scholar

[16] Wu, Z.G.; Zhou, C.X.; Qi, R.R Polym. Compos. 2002, 23(4): 634-646.

Google Scholar

[17] Jiang, W.; Chen, S.H.; Chen, Y. J. Appl. Polym. Sci. 2006, 102: 5336-5343.

Google Scholar

[18] Nutt, S. R.; Shen, H. (2005) U.S. Patent 6,841,584.

Google Scholar

[19] Orpin, M. (2010) U.S. Patent 7,718,751.

Google Scholar

[20] Aaud, M.L.; Nutt, S.R.; Pettarin, V.; Frontini, P.M. eXPRESS Polym. Lett. 2007, 1(9): 629-639.

Google Scholar

[21] Furukawa, M.; Mitsui, Y.; Fukumaru, T.; Kojio, K. Polymer 2005, 46, 10817-10822.

DOI: 10.1016/j.polymer.2005.09.009

Google Scholar

[22] Auad, M. L.; Zhao, L.; Shen, H.; Nutt, S. R.; Sorathia, U. J. Appl. Polym. Sci. 2007, 104: 1399-1407.

DOI: 10.1002/app.24405

Google Scholar

[23] Ibeh, C.C.; Bubacz, M. J. Cell. Plast. 2008, 44, 493-515.

Google Scholar