[1]
J. Lenz and A. S. Edelstein, "Magnetic sensors and their applications," IEEE Sensors Journal, vol. 6, pp.631-649, 2006.
DOI: 10.1109/jsen.2006.874493
Google Scholar
[2]
K. Mohri, et al., "Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls," Sensors and Actuators A, vol. 91, pp.85-90, 2001.
DOI: 10.1016/s0924-4247(01)00620-3
Google Scholar
[3]
K. Mohri, et al., "Amorphous wire and CMOS IC-based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) and stress-impedance (SI) effects," IEEE Transactions on Magnetics, vol. 38, pp.3063-3068, 2002.
DOI: 10.1109/tmag.2002.802438
Google Scholar
[4]
M.-H. Phan and H.-X. Peng, "Giant magnetoimpedance materials: fundamentals and applications," Progress in Materials Science, vol. 53, pp.323-420, 2008.
DOI: 10.1016/j.pmatsci.2007.05.003
Google Scholar
[5]
A. Soliman, "Current feedback operational amplifier based oscillators," Analog Integrated Circuits and Signal Processing, vol. 23, pp.45-55, 2000.
Google Scholar
[6]
D. Biolek, et al., "Active elements for analog signal processing: classification, review and new proposals," Radioengineering, vol. 17, pp.15-32, 2008.
Google Scholar
[7]
S. S. Gupta, et al., "New voltage controlled oscillators using CFOAs," International Journal of Electroncs and Communications, vol. 63, pp.209-217, 2009.
DOI: 10.1016/j.aeue.2008.01.002
Google Scholar
[8]
R. Holzel, "A simple wide-band sine wave quadrature oscillator," IEEE Transactions on Instrumentation and Measurement, vol. 42, pp.758-760, 1993.
DOI: 10.1109/19.231604
Google Scholar
[9]
W. Jaikla, et al., "A simple current-mode quadrature oscillator using single CDTA," Radioengineering, vol. 17, pp.33-40, 2008.
Google Scholar
[10]
S.-I. Liu and Y.-H. Liao, "Current-mode quadrature sinusoidal oscillator using single FTFN," International Journal of Electronics, vol. 81, pp.171-175, 1996.
DOI: 10.1080/002072196136832
Google Scholar
[11]
M. T. Ahmed, et al., "On transconductance-C quadrature oscillators," International Journal of Electronics, vol. 83, pp.201-207, 1997.
Google Scholar
[12]
J.-W. Horng, et al., "Quadrature oscillators using CCIIs," International Journal of Electronics, vol. 92, pp.21-31, 2005.
Google Scholar
[13]
S. S. Gupta and R. Senani, "New single-resistance-controlled oscillator configurations using unity-gain cells," Analog Integrated Circuits and Signal Processing, vol. 46, pp.111-119, 2006.
DOI: 10.1007/s10470-005-0985-7
Google Scholar
[14]
W. Tangsrirat and W. Surakampontorn, "Single-resistance-controlled quadrature oscillator and universal biquad filter using CFOAs," International Journal of Electronics and Communications, vol. 63, pp.1080-1086, 2009.
DOI: 10.1016/j.aeue.2008.08.006
Google Scholar
[15]
A. M. Soliman, "On the generation of CCII and ICCII oscillators from three Op Amps oscillator," Mircoelectronics Journal, vol. 41, pp.680-687, 2010.
DOI: 10.1016/j.mejo.2010.05.009
Google Scholar
[16]
N. Herencsar, et al., "Novel mixed-mode KHN-equivalent filter using Z-copy CFTAs and grounded capacitors," Latest Trends on Circuits, Systems and Signals, pp.87-90, 2010.
Google Scholar
[17]
W. Tangsrirat, "Single-input three-output electronically tunable universal current-mode filter using current follower transconductance amplifiers," International Journal of Electronics and Communications, vol. 65, pp.783-787, 2011.
DOI: 10.1016/j.aeue.2011.01.002
Google Scholar
[18]
OPA860, "Wide bandwidth operational transconductance amplifier (OTA) and buffer. Texas Instruments, SBOS331C, June 2005, Revised August 2008."
Google Scholar
[19]
C. Sakul, et al., "New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors," Radioengineering, vol. 20, pp.890-897, 2011.
Google Scholar
[20]
"SPICE model of OPA860 by Texas Instruments."
Google Scholar