[1]
Čada, Z. Salajka, V. Kala, J. Kanický, V., The Probabilistic Approach to Modification of Seismic Linear Response Spectra, In proc. Future Communication, Computing, Control and Management, ISBN 978-3-642-27310-0, Berlin Heidelberg, 2011.
Google Scholar
[2]
Ellingwood, B., Galambos, T.B., Macgregor, J.C., And Cornell, C.A., Development of A Probability Based Load Criterion for American National Standard A58, NBS Special Publication SP577, National Bureau Of Standards, Washington, D.C, 1980.
DOI: 10.6028/nbs.sp.577
Google Scholar
[3]
Eurocode 1998, Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, ENV 1998, CEN, may 2003.
DOI: 10.3403/03244372u
Google Scholar
[4]
JCSS-OSTL/DIA/VROU-10-11-2000, Probabilistic Model Code, Part 1, Basis Of Design, Working Material, Http://Www.Jcss.Ethz.Ch/, 2001.
Google Scholar
[5]
Hanbook 2, Implementation of Eurocodes Reliability Backgrounds. Guide of the basis of structural reliability and risk engineering related to Eurocodes. Development of Skills Facilitating Implementatio of Eurocodes. Leonardo Da Vinci Pilot Project CZ/02/B/F/PP- 134007. Prague, CR, 10.2005.
Google Scholar
[6]
Kala, Z., Sensitivity analysis of steel plane frames with initial imperfections, Engineering Structures, 33, 8, pp.2342-2349.
DOI: 10.1016/j.engstruct.2011.04.007
Google Scholar
[7]
Kohnke, P., ANSYS, Inc., Theory, Theory Manual, 001369, Twelfth Edition. SAS IP, Inc. 2005.
Google Scholar
[8]
Králik, J. Králik, J., jr.: Deterministic and Probabilistic Analysis of Nonsymmetrical Wind Effects to Symmetrical High Rise Buildings. In proc. European Safety and Reliability Conference, ESREL 2009, Reliability, Risk and Safety, Theory and Applications, CRC Press/A.Balkema Book, Taylor&Francis Group, Prague, Czech Republic, 7-10 September, Vol.2, pp.1393-1396, ISBN 978-0-415-55509-8, Full text in CD.
DOI: 10.1201/9780203859759.ch192
Google Scholar
[9]
Králik, J.: Reliability Analysis of Structures Using Stochastic Finite Element Method, Published by STU Bratislava, 2009, 143pp. ISBN 978-80-227-3130-0.
Google Scholar
[10]
Králik, J.: Nonlinear Probabilistic Analysis of the Reinforced Concrete Structure Failure of a Nuclear Power Plant Considering Degradation Effects. In: Applied Mechanics and Materials Vols. 249-250 (2013) pp.1087-1098, Trans Tech Publications, Switzerland, doi:10.4028/ www.scientific.net /AMM.249-250.1087.
DOI: 10.4028/www.scientific.net/amm.249-250.1087
Google Scholar
[11]
Krejsa, M. Janas, P. Čajka, R.: Using DOProC Method in Structural Reliability Assessment, Applied Mechanics and Materials, Vols. 300-301 (2013), pp.860-869, Trans Tech Publications, Switzerland, doi:10.4028/ www.scientific.net/ AMM.300-301.860.
DOI: 10.4028/www.scientific.net/amm.300-301.860
Google Scholar
[12]
Melchers, R. E., Structural Reliability. Analysis and Prediction, John Wiley & Sons, Chichester, U.K., 1999.
Google Scholar
[13]
Montgomery, Douglas C. 2005. Design and Analysis of Experiments: Response surface method and designs. New Jersey: John Wiley and Sons, Inc.
Google Scholar
[14]
Rosovsky, D. V., Structural Reliability. Part Of Publication W.Chen, The Civil Engineering Handbook, CRC Press, W.F. Chen Ed. 1995, Clemson University, SC.
Google Scholar
[15]
Saito, T. Shuichiro A. Shibata, A . , Seismic damage analysis of reinforced concrete buildings based on statistics of structural lateral resistance, In. Structural Safety, Vol.19, No.1, pp.141-151, 1997, Elsevier Science Ltd.
DOI: 10.1016/s0167-4730(96)00027-6
Google Scholar
[16]
Soares, R. C. et al., Reliability Analysis of Non-Linear Reinforced Concrete Frames Using the Response Surface Method. Journal of Reliability Engineering &System Safety, Vol. 75, Pp. 1-16.
DOI: 10.1016/s0951-8320(01)00043-6
Google Scholar