[1]
Bisseling, R., T. van Leeuwen and U.V. Catalyurek. Combinatorial Problems in High-Performance Computing: Partitioning. in Dagstuhl Seminar Proceedings. 2009. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
Google Scholar
[2]
Leinweber, L. and S. Bhunia. Fine-grained supply gating through hypergraph partitioning and Shannon decomposition for active power reduction. in Proceedings of the conference on Design, automation and test in Europe. 2008: ACM.
DOI: 10.1109/date.2008.4484709
Google Scholar
[3]
Dong, C., et al., Partition-Based Global Placement Considering Wire-Density Uniformity for CMP Variations. Tsinghua Science & Technology, 2011. 16(1): pp.41-50.
DOI: 10.1016/s1007-0214(11)70007-4
Google Scholar
[4]
Bichot, C.E. A metaheuristic based on fusion and fission for partitioning problems. in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International. 2006: IEEE.
DOI: 10.1109/ipdps.2006.1639518
Google Scholar
[5]
Burdescu, D., et al., New algorithm for segmentation of images represented as hypergraph hexagonal-grid. Pattern Recognition and Image Analysis, 2011: pp.395-402.
DOI: 10.1007/978-3-642-21257-4_49
Google Scholar
[6]
Gary, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness. 1979, WH Freeman and Company, New York.
Google Scholar
[7]
Arafeh, B., K. Day and A. Touzene, A multilevel partitioning approach for efficient tasks allocation in heterogeneous distributed systems. Journal of Systems Architecture, 2008. 54(5): pp.530-548.
DOI: 10.1016/j.sysarc.2007.10.001
Google Scholar
[8]
Leng, M. and S. Yu, An effective multi-level algorithm for bisecting graph. Advanced Data Mining and Applications, 2006: pp.493-500.
DOI: 10.1007/11811305_54
Google Scholar
[9]
Holtgrewe, M. and P. Sanders, A scalable coarsening phase for a multi-level graph partitioning algorithm. Master's thesis, University of Karlsruhe, 2009.
Google Scholar
[10]
Brillout, R., A Multi-Level Framework for Bisection Heuristics. 2009.
Google Scholar
[11]
Hendrickson, B. and R. Leland, A multilevel algorithm for partitioning graphs. 1993, Citeseer.
Google Scholar
[12]
Karypis, G. and V. Kumar, Multilevel k-way hypergraph partitioning. VLSI design, 2000. 11(3): pp.285-300.
DOI: 10.1155/2000/19436
Google Scholar
[13]
Vastenhouw, B. and R.H. Bisseling, A two-dimensional data distribution method for parallel sparse matrix-vector multiplication. SIAM review, 2005. 47(1): pp.67-95.
DOI: 10.1137/s0036144502409019
Google Scholar
[14]
Alpert, C.J. The ISPD98 circuit benchmark suite. in Proceedings of the 1998 international symposium on Physical design. 1998: ACM.
DOI: 10.1145/274535.274546
Google Scholar
[15]
Karypis, G. and V. Kumar, hMETIS 1.5: A hypergraph partitioning package. 1998, Technical report, Department of Computer Science, University of Minnesota, 1998. Available on the WWW at URL http://www. cs. umn. edu/metis.
Google Scholar