The Investigation of a New NO2 OTFT Sensor Based on Heterojunction F16CuPc/CuPc Thin Films

Article Preview

Abstract:

The bottom contact heterojunction organic thin film transistors (OTFTs) based on n-type hexadecafluorophthalocyaninatocopper (F16CuPc) and p-type copper phthalocyanine (CuPc) bilayer were developed by the vacuum evaporation, which were applied to detect nitrogen dioxide (NO2). The sensors with different thickness (5nm, 10nm, 15nm and 20nm) of CuPc were prepared to investigate the influence of CuPc film thickness on the properties of devices. The results showed that four parameters including the source-drain current (IDS), grid current (IGS), threshold voltage (VT) and carrier mobility (μ) changed in a few seconds when the sensors were exposed to the atmosphere of NO2. Further more, IDS and IGS presented extremely similar variation trend. So the grid current would be taken as a new parameter to reveal the response characteristic of OTFT gas sensor. By comparison, the device with 15nm CuPc thin film exhibited the optimum electronic and gas sensing properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-163

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.J. Drury, C.M.J. Mutsaers, C.M. Hart, et al. Low-cost all-polymer integrated circuits, Appl. Phys. Lett.73(1998)108-110.

DOI: 10.1063/1.121783

Google Scholar

[2] H.Klauk, D.J. Gundlach, J.A. Nichols, et al. Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans Electron Devices, 46:1258-1263(1999).

DOI: 10.1109/16.766895

Google Scholar

[3] H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. Van Der Putten, K. E. Kuijk, K. M. Hart, E. antatore, D. M. De Leeuw, Adv. Mater. 2002, 14, 1201.

DOI: 10.1002/1521-4095(20020903)14:17<1201::aid-adma1201>3.0.co;2-5

Google Scholar

[4] J.T. Mabeck, G. G. Malliaras. Chemical and biological sensors based on organic thin-film transistors. Anol Bioanal Chem., 384(2006)343-353.

DOI: 10.1007/s00216-005-3390-2

Google Scholar

[5] L. Torsi, G.M. Farinola, F. Marinelli, M.C. Tanese, O.H. Omar, L. Valli, F. Babudri,F. Palmisano, P.G. Zambonin, F. Naso, A sensitivity-enhanced field-effect chiralsensor, Nature Materials 7 (2008) 412–417.

DOI: 10.1038/nmat2167

Google Scholar

[6] Gen-Wen Hsieh, Flora M. Li, Paul Beecher, Arokia Nathan, Yiliang Wu, Beng S. Ong, William I. Milne, High performance nanocomposite thin film transistors with bilayer carbon nanotube- polythiophene active channel by ink-jet printing. Journal of applied physics 106-123706 (2009).

DOI: 10.1063/1.3273377

Google Scholar

[7] Crone B, Dodabalapur A, Gelperin A, et al. Electronic sensing of vapors with organic transistors. Appl Phys Lett, 2001.78: 2229-2232.

DOI: 10.1063/1.1360785

Google Scholar

[8] Jun Wang, Haibo Wang, Xuanjun Yan, Haichao Huang, Di Jin, Jianwu Shi, Yanhong Tang, and Donghang Yan, Heterojunction Ambipolar Organic Transistors Fabricated by a Two-Step Vacuum-Deposition Process. Advanced functional materials, 2006, 16, 824-830

DOI: 10.1002/adfm.200500111

Google Scholar

[9] Z.-T. Zhu, T. Mason, R. Dieckmann, G.G. Malliaras, Humidity sensors based on pentacene thin- film transistors, Appl. Phys. Lett. 81 (2002) 4643–4645.

DOI: 10.1063/1.1527233

Google Scholar

[10] H. Fukuda, K. Kasama, S. Nomura, Highly Sensitive MISFET sensors with porous Pt–SnO2 gate electrode for CO gas sensing applications, Sensors and Actuators B 64 (2000) 163–168.

DOI: 10.1016/s0925-4005(99)00501-8

Google Scholar

[11] L. Torsi, A. Dodabalapur , L. Sabbatini , P.G. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors, Sensors and Actuators B 67(2000) 312–316.

DOI: 10.1016/s0925-4005(00)00541-4

Google Scholar