Electrical, Thermal and Induction Heating Properties of Dense Asphalt Concrete

Article Preview

Abstract:

Induction heating consists in adding electrically conductive fibers to the asphalt mixture and heating them with an induction heating device. But still, the factors that affect the increase of temperature are not well-known. With this purpose, 25 different mixtures, with the same aggregates distribution and amount of bitumen, but with 2 different lengths, 4 different quantities, and 4 different diameters of steel wool fibers have been considered. The influence of fibers on the air void content, electrical and thermal conductivity and on the induction heating of dense asphalt concrete has been studied. It was found that steel wool fibers increase slightly the electrical and thermal conductivities of dense asphalt concrete. Finally, it has been observed that the temperature reached due to the induction heating, increases with the number of fibers in the mixture and with their diameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-311

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Liu, A. García, E. Schlangen, M. van de Ven. Induction healing of asphalt mastic and porous asphalt concrete. Const Build Mat. 25 (2011) 3746-3752.

DOI: 10.1016/j.conbuildmat.2011.04.016

Google Scholar

[2] A. García. Self-Healing of open cracks in asphalt mastic. FUEL. 93 (2011) 264-272.

DOI: 10.1016/j.fuel.2011.09.009

Google Scholar

[3] O. Ukwuoma, B. Ademodi. The effects of temperature and shear rate on the apparent viscosity of Nigerian oil sand bitumen. Fuel Process Technol. 60 (1999) 95-101.

DOI: 10.1016/s0378-3820(99)00014-4

Google Scholar

[4] Y. Zhao., H.G. Machel. Determination of the viscosities of Grosmong Reservoir Bitumen, Alberta, Canada. CSP CSEG CWLS Convention. Calgary, Canada, 2009.

Google Scholar

[5] D. Sybilski. Non-Newtonian viscosity of polymer-modified bitumens. Mater Struct. 26 (1993) 15-23.

DOI: 10.1007/bf02472233

Google Scholar

[6] A.B. Bazyleva, H. Anwarul, M. Fulem, M. Becerra, J. Shaw. Bitumen and heavy oil rheological properties: reconciliation with viscosity measurements. J Chem Eng Data. 55(3) (2010) 1389-1397.

DOI: 10.1021/je900562u

Google Scholar

[7] Q. Liu, E. Schlangen, A. García, van de Ven M. Induction heating of electrically conductive porous asphalt concrete. Const Build Mat. 24(7) (2009) 1207-1213.

DOI: 10.1016/j.conbuildmat.2009.12.019

Google Scholar

[8] A. García, E. Schlangen, M. van de Ven. Induction heating of mastic containing conductive fibers and fillers. Mat Struct. 44(2) (2010) 499-508.

DOI: 10.1617/s11527-010-9644-2

Google Scholar

[9] A. García, E. Schlangen, M. van de Ven, Q. Liu. A simple model to define induction heating in asphalt mastic. Const Build Mat. 31 (2012) 38-46.

DOI: 10.1016/j.conbuildmat.2011.12.046

Google Scholar

[10] A. Garcia A, J. Norambuena-Contreras, M.N. Partl, P. Schuetz. Homogeneity and mechanical properties of dense asphalt concrete with steel wool fibers. Const Build Mat 2012, (Accepted for publication).

DOI: 10.1016/j.conbuildmat.2013.01.030

Google Scholar

[11] X. Zhou, S. Wang, C. Zhou. Thermal conduction and insulation modification in asphalt-based composites, Journal of Materials Science Technology. 28(3) (2012) 285-288.

DOI: 10.1016/s1005-0302(12)60055-3

Google Scholar

[12] A. García, E. Schlangen, M. van de Ven, Q. Liu. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Const Build Mat. 21(10) (2009) 3175-3181.

DOI: 10.1016/j.conbuildmat.2009.06.014

Google Scholar

[13] M.N. Partl, A. Flisch, M. Johnsson. Comparison of different compaction methods using X-ray computer tomography. Roads Mat Pav Des. 8(2) (2007) 139-164.

DOI: 10.3166/rmpd.8.139-164

Google Scholar

[14] R.C. Progelhof, J.L. Throne, R.R. Ruesch. Methods for predicting the thermal conductivity of composite systems: A Review. Polymer Engineering and Science. 15(9) (1976) 615-625.

DOI: 10.1002/pen.760160905

Google Scholar

[15] P. Bonnet, D. Sireude, B. Garnier, O. Chauvet. Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters. 91 (2007) 201910 - 201910-3.

DOI: 10.1063/1.2813625

Google Scholar

[16] J. Luca, P.E. Mrawira. New measurement of thermal properties of Superpave asphalt concrete. J. Mater. Civ. Eng. 17(1) (2005) 72-79.

DOI: 10.1061/(asce)0899-1561(2005)17:1(72)

Google Scholar

[17] B.W. Powell., C.Y. Ho, P.E. Liley. Thermal conductivity of selected materials. NSRDS-NBS 8. National Standard Reference Data Series-National Bureau of Standards-8, 1966.

Google Scholar