[1]
Q. Liu, A. García, E. Schlangen, M. van de Ven. Induction healing of asphalt mastic and porous asphalt concrete. Const Build Mat. 25 (2011) 3746-3752.
DOI: 10.1016/j.conbuildmat.2011.04.016
Google Scholar
[2]
A. García. Self-Healing of open cracks in asphalt mastic. FUEL. 93 (2011) 264-272.
DOI: 10.1016/j.fuel.2011.09.009
Google Scholar
[3]
O. Ukwuoma, B. Ademodi. The effects of temperature and shear rate on the apparent viscosity of Nigerian oil sand bitumen. Fuel Process Technol. 60 (1999) 95-101.
DOI: 10.1016/s0378-3820(99)00014-4
Google Scholar
[4]
Y. Zhao., H.G. Machel. Determination of the viscosities of Grosmong Reservoir Bitumen, Alberta, Canada. CSP CSEG CWLS Convention. Calgary, Canada, 2009.
Google Scholar
[5]
D. Sybilski. Non-Newtonian viscosity of polymer-modified bitumens. Mater Struct. 26 (1993) 15-23.
DOI: 10.1007/bf02472233
Google Scholar
[6]
A.B. Bazyleva, H. Anwarul, M. Fulem, M. Becerra, J. Shaw. Bitumen and heavy oil rheological properties: reconciliation with viscosity measurements. J Chem Eng Data. 55(3) (2010) 1389-1397.
DOI: 10.1021/je900562u
Google Scholar
[7]
Q. Liu, E. Schlangen, A. García, van de Ven M. Induction heating of electrically conductive porous asphalt concrete. Const Build Mat. 24(7) (2009) 1207-1213.
DOI: 10.1016/j.conbuildmat.2009.12.019
Google Scholar
[8]
A. García, E. Schlangen, M. van de Ven. Induction heating of mastic containing conductive fibers and fillers. Mat Struct. 44(2) (2010) 499-508.
DOI: 10.1617/s11527-010-9644-2
Google Scholar
[9]
A. García, E. Schlangen, M. van de Ven, Q. Liu. A simple model to define induction heating in asphalt mastic. Const Build Mat. 31 (2012) 38-46.
DOI: 10.1016/j.conbuildmat.2011.12.046
Google Scholar
[10]
A. Garcia A, J. Norambuena-Contreras, M.N. Partl, P. Schuetz. Homogeneity and mechanical properties of dense asphalt concrete with steel wool fibers. Const Build Mat 2012, (Accepted for publication).
DOI: 10.1016/j.conbuildmat.2013.01.030
Google Scholar
[11]
X. Zhou, S. Wang, C. Zhou. Thermal conduction and insulation modification in asphalt-based composites, Journal of Materials Science Technology. 28(3) (2012) 285-288.
DOI: 10.1016/s1005-0302(12)60055-3
Google Scholar
[12]
A. García, E. Schlangen, M. van de Ven, Q. Liu. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Const Build Mat. 21(10) (2009) 3175-3181.
DOI: 10.1016/j.conbuildmat.2009.06.014
Google Scholar
[13]
M.N. Partl, A. Flisch, M. Johnsson. Comparison of different compaction methods using X-ray computer tomography. Roads Mat Pav Des. 8(2) (2007) 139-164.
DOI: 10.3166/rmpd.8.139-164
Google Scholar
[14]
R.C. Progelhof, J.L. Throne, R.R. Ruesch. Methods for predicting the thermal conductivity of composite systems: A Review. Polymer Engineering and Science. 15(9) (1976) 615-625.
DOI: 10.1002/pen.760160905
Google Scholar
[15]
P. Bonnet, D. Sireude, B. Garnier, O. Chauvet. Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters. 91 (2007) 201910 - 201910-3.
DOI: 10.1063/1.2813625
Google Scholar
[16]
J. Luca, P.E. Mrawira. New measurement of thermal properties of Superpave asphalt concrete. J. Mater. Civ. Eng. 17(1) (2005) 72-79.
DOI: 10.1061/(asce)0899-1561(2005)17:1(72)
Google Scholar
[17]
B.W. Powell., C.Y. Ho, P.E. Liley. Thermal conductivity of selected materials. NSRDS-NBS 8. National Standard Reference Data Series-National Bureau of Standards-8, 1966.
Google Scholar