Measurement of Viscosity Using a Long-Period Fiber-Grating-Based Viscometer

Article Preview

Abstract:

This work addresses the comprehensive viscosity measurements and assessment of fluidic materials in the range from 0.01 to 2000 Poises using a fiber optical viscometer with the long-period fiber grating (LPFG) technology. The fluidic materials used and evaluated in this study were AC-20 asphalt cement, four types of silicone oils, and sunflower seed oil. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and fluidic materials (other than the AC-20 asphalt) at six different temperatures, i.e., 30, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities of fluidic materialsthe silicone oils and sunflower seed oil at the above six temperatures. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. The LPFG-based viscometer was capable of measuring the viscosity (discharge time) in the range from 0.12 to 2000 Poises, which is much wider than the viscosity range of a traditional electromechanical rotational viscometer. This fiber-optic LPFG-based viscometer could be proposed and implemented in the field of road and airfield pavement technology such as the viscosity measurements of asphalt cements, emulsified asphalt binders, and other viscous materials. Hopefully, such a highly sensitive viscometer is suitable for use in various fields of applications, such as civil, food, chemical and biological, mechanical, petroleum, and aerospace engineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

420-427

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Mazza and D. Washbourn, The use of fibre optics in viscometry, J. Phys. E Sci. Instrum. 17 (1984) 552-554.

DOI: 10.1088/0022-3735/17/7/002

Google Scholar

[2] G. Meier, R. Vavrin, J. Kohlbrecher, J. Buitenhuis, M. Lettinga, and M. Ratajczyk, SANS and dynamic light scattering to investigate the viscosity of toluene under high pressure up to 1800 bar, Meas. Sci. Technol. 19 (2008) 034017.

DOI: 10.1088/0957-0233/19/3/034017

Google Scholar

[3] W. Wang, P. Reinhall, and S. Yee, Fluid viscosity measurement using forward light scattering, Meas. Sci. Technol. 10 (1999) 316-322.

DOI: 10.1088/0957-0233/10/4/010

Google Scholar

[4] W. Wang, S. Yee, and P. Reinhall, Optical viscosity sensor using forward light scattering, Sens. Actuat. B 24-25 (1995) 753-755.

DOI: 10.1016/0925-4005(95)85167-4

Google Scholar

[5] C. Chang, A. Perez, R. Kduever, P. Reinhall, and W. Wang, Optical viscosity sensor using bend loss of fiber, Proc. SPIE 69351E (2008).

DOI: 10.1117/12.775551

Google Scholar

[6] C. Chang, J. Peyroux, A. Perez, C. Tsui, and W. Wang, Optical viscosity sensor, Proc. SPIE 72951Z (2009).

DOI: 10.1117/12.816544

Google Scholar

[7] A. Fedorchenko, I. Stachiv, J. Ho, A. Wang, and W. Wang, Optical viscosity sensor based on the partially immersed fiber vibrations. Proc. SPIE 693524 (2008).

DOI: 10.1117/12.774363

Google Scholar

[8] Y. Taguchi, R. Nagamachi, and Y. Nagasaka, Micro optical viscosity sensor for in situ measurement based on a laser-induced capillary wave, J. Thermal Sci. Technol. 4 (2009) 98-108.

DOI: 10.1299/jtst.4.98

Google Scholar

[9] Y. Taguchi, A. Ebisui, and Y. Nagasaka, Miniaturized optical viscosity sensor based on a laser-induced capillary wave, J. Opt. A Pure Appl. Opt. 10 (2008) 044008.

DOI: 10.1088/1464-4258/10/4/044008

Google Scholar

[10] A. Ebisui, Y. Taguchi, and Y. Nagasaka, Novel optical viscosity sensor based on laser-induced capillary wave, Proc. SPIE 6887 (2008).

DOI: 10.1117/12.759637

Google Scholar

[11] L. Tanner, The measurement of viscosity by optical techniques applied to a falling liquid film, J. Phys. E Sci. Instrum. 9 (1976) 967-973.

DOI: 10.1088/0022-3735/9/11/024

Google Scholar

[12] L. Tanner, Two accurate optical methods for Newtonian viscosity measurement, and observations on a surface effect with silicon oil, J. Phys. E Sci. Instrum. 10 (1977) 1019-1028.

DOI: 10.1088/0022-3735/10/10/020

Google Scholar

[13] G. Pesce, A. Sasso, and S. Fusco, Viscosity measurements on micron-size scale using optical tweezers, Rev. Sci. Instrum. 76 (2005) 115105.

DOI: 10.1063/1.2133997

Google Scholar

[14] M. Jain, S. Schmidt, C. Mungle, K. Loiselle, and C. Grimes, Measurement of temperature and liquid viscosity using wireless magneto-acoustic/magneto-optical sensors, IEEE Trans. Mag. 37 (2001) 2767-2769.

DOI: 10.1109/20.951301

Google Scholar

[15] M. Haidekker, W. Akers, D. Fischer, and E. Theodorakis, Optical fiber-based fluorescent viscosity sensor, Opt. Lett. 31 (2006) 2529-2531.

DOI: 10.1364/ol.31.002529

Google Scholar

[16] J.-D. Lin, J.-N. Wang, S.-H. Chen, and J.-M. Wang, Development of viscosity sensor with long period fiber grating technology, Proc. SPIE 7279 (2009) 7292452~1-9.

DOI: 10.1117/12.815853

Google Scholar

[17] V. Streeter and E. Wylie, Fluid Mechanics, McGraw-Hill, New York, 1979, 364-72.

Google Scholar

[18] H. Patrick, A. Kersey, and F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction, J. Lightwave Technol. 16 (1998) 1606-1612.

DOI: 10.1109/50.712243

Google Scholar

[19] J.-N. Wang and J.-L. Tang, 2010, An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism, Sensors 10 (2010) 11174-11188.

DOI: 10.3390/s101211174

Google Scholar

[20] J.-N. Wang, J.-L. Tang, W.-T. Wu, D.-C. Chen, C.-H. Chen, and C.-Y. Luo, Viscosity sensor using long-period fiber grating based on transmission amplitude change of resonance wavelength, Proc. Photonics Global (2010).

DOI: 10.1109/PGC.2010.5705992

Google Scholar

[21] J.-L. Tang and J.-N. Wang, Measurement of chloride ion concentration in concrete structures with long-period grating technology, Smart Mater. Struct. 16 (2007) 665-672.

DOI: 10.1088/0964-1726/16/3/013

Google Scholar

[22] J.-L. Tang and J.-N. Wang, Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles, Sensors, 7 (2008) 100-118.

DOI: 10.3390/s8010171

Google Scholar

[23] G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, High temperature stability of long-period fiber gratings produced using an electric arc, J. Lightwave Technol. 19 (2001) 1574–1579.

DOI: 10.1109/50.956145

Google Scholar

[24] S. W. James and R. P. Tatam, Optical fibre long-period grating sensors: characteristics and application, Meas. Sci. Technol. 14 (2003) R49–R61.

DOI: 10.1088/0957-0233/14/5/201

Google Scholar

[25] V. Bhatia, D. K. Campbell, D. Sherr, G. D. Tiffanie, A. Z. Noel, A. Gregory, A. M. Kent, and R. O. Clau, Temperature-insensitive and strain-insensitive long-period gratings sensor for smart structures, Opt. Eng. 36 (1997) 1872-1876.

DOI: 10.1117/1.601379

Google Scholar

[26] V. Bhatia, G. D. Tiffanie, A. Z. Noel, and R. O. Clau, Temperature-insensitive long-period grating for strain and refractive index sensing, Proc. SPIE 3042 (1997) 194-202.

Google Scholar

[27] S. Khaliq, S. W. James, and R. P. Tatam, Fiber-optic liquid-level sensor using a long-period grating, Optics Lett. 26 (2001) 1224-1226.

DOI: 10.1364/ol.26.001224

Google Scholar

[28] J.-N. Wang and C.-Y. Luo, Long-Period fiber grating sensors for the measurement of liquid level and fluid flow velocity, Sensors 12 (2012) 4578-4593.

DOI: 10.3390/s120404578

Google Scholar

[29] R. Hou R, Z. Ghassemlooy, A. Hassan, C. Lu, and K. Dowker, Modeling of long-period fibre grating response to refractive index higher than that of cladding, Meas. Sci. Technol. 12 (2001) 1709-1713.

DOI: 10.1088/0957-0233/12/10/314

Google Scholar

[30] V. Hackley and C. Ferraris, Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems; National Institute of Standards and Technology: Special Publication 946, Gaithersburg, MD, USA, 2001.

Google Scholar

[31] L. Andrade, J. Petronílio, C. E. A. Maneschy, and D. O. A. Cruz, The Carreau-Yasuda fluids: a skin friction equation for turbulent flow in pipes and Kolmogorov dissipative scales. J. Braz. Soc. Mech. Sci. Eng. 24 (2007) 162-167.

DOI: 10.1590/s1678-58782007000200005

Google Scholar