[1]
R. Mazza and D. Washbourn, The use of fibre optics in viscometry, J. Phys. E Sci. Instrum. 17 (1984) 552-554.
DOI: 10.1088/0022-3735/17/7/002
Google Scholar
[2]
G. Meier, R. Vavrin, J. Kohlbrecher, J. Buitenhuis, M. Lettinga, and M. Ratajczyk, SANS and dynamic light scattering to investigate the viscosity of toluene under high pressure up to 1800 bar, Meas. Sci. Technol. 19 (2008) 034017.
DOI: 10.1088/0957-0233/19/3/034017
Google Scholar
[3]
W. Wang, P. Reinhall, and S. Yee, Fluid viscosity measurement using forward light scattering, Meas. Sci. Technol. 10 (1999) 316-322.
DOI: 10.1088/0957-0233/10/4/010
Google Scholar
[4]
W. Wang, S. Yee, and P. Reinhall, Optical viscosity sensor using forward light scattering, Sens. Actuat. B 24-25 (1995) 753-755.
DOI: 10.1016/0925-4005(95)85167-4
Google Scholar
[5]
C. Chang, A. Perez, R. Kduever, P. Reinhall, and W. Wang, Optical viscosity sensor using bend loss of fiber, Proc. SPIE 69351E (2008).
DOI: 10.1117/12.775551
Google Scholar
[6]
C. Chang, J. Peyroux, A. Perez, C. Tsui, and W. Wang, Optical viscosity sensor, Proc. SPIE 72951Z (2009).
DOI: 10.1117/12.816544
Google Scholar
[7]
A. Fedorchenko, I. Stachiv, J. Ho, A. Wang, and W. Wang, Optical viscosity sensor based on the partially immersed fiber vibrations. Proc. SPIE 693524 (2008).
DOI: 10.1117/12.774363
Google Scholar
[8]
Y. Taguchi, R. Nagamachi, and Y. Nagasaka, Micro optical viscosity sensor for in situ measurement based on a laser-induced capillary wave, J. Thermal Sci. Technol. 4 (2009) 98-108.
DOI: 10.1299/jtst.4.98
Google Scholar
[9]
Y. Taguchi, A. Ebisui, and Y. Nagasaka, Miniaturized optical viscosity sensor based on a laser-induced capillary wave, J. Opt. A Pure Appl. Opt. 10 (2008) 044008.
DOI: 10.1088/1464-4258/10/4/044008
Google Scholar
[10]
A. Ebisui, Y. Taguchi, and Y. Nagasaka, Novel optical viscosity sensor based on laser-induced capillary wave, Proc. SPIE 6887 (2008).
DOI: 10.1117/12.759637
Google Scholar
[11]
L. Tanner, The measurement of viscosity by optical techniques applied to a falling liquid film, J. Phys. E Sci. Instrum. 9 (1976) 967-973.
DOI: 10.1088/0022-3735/9/11/024
Google Scholar
[12]
L. Tanner, Two accurate optical methods for Newtonian viscosity measurement, and observations on a surface effect with silicon oil, J. Phys. E Sci. Instrum. 10 (1977) 1019-1028.
DOI: 10.1088/0022-3735/10/10/020
Google Scholar
[13]
G. Pesce, A. Sasso, and S. Fusco, Viscosity measurements on micron-size scale using optical tweezers, Rev. Sci. Instrum. 76 (2005) 115105.
DOI: 10.1063/1.2133997
Google Scholar
[14]
M. Jain, S. Schmidt, C. Mungle, K. Loiselle, and C. Grimes, Measurement of temperature and liquid viscosity using wireless magneto-acoustic/magneto-optical sensors, IEEE Trans. Mag. 37 (2001) 2767-2769.
DOI: 10.1109/20.951301
Google Scholar
[15]
M. Haidekker, W. Akers, D. Fischer, and E. Theodorakis, Optical fiber-based fluorescent viscosity sensor, Opt. Lett. 31 (2006) 2529-2531.
DOI: 10.1364/ol.31.002529
Google Scholar
[16]
J.-D. Lin, J.-N. Wang, S.-H. Chen, and J.-M. Wang, Development of viscosity sensor with long period fiber grating technology, Proc. SPIE 7279 (2009) 7292452~1-9.
DOI: 10.1117/12.815853
Google Scholar
[17]
V. Streeter and E. Wylie, Fluid Mechanics, McGraw-Hill, New York, 1979, 364-72.
Google Scholar
[18]
H. Patrick, A. Kersey, and F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction, J. Lightwave Technol. 16 (1998) 1606-1612.
DOI: 10.1109/50.712243
Google Scholar
[19]
J.-N. Wang and J.-L. Tang, 2010, An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism, Sensors 10 (2010) 11174-11188.
DOI: 10.3390/s101211174
Google Scholar
[20]
J.-N. Wang, J.-L. Tang, W.-T. Wu, D.-C. Chen, C.-H. Chen, and C.-Y. Luo, Viscosity sensor using long-period fiber grating based on transmission amplitude change of resonance wavelength, Proc. Photonics Global (2010).
DOI: 10.1109/PGC.2010.5705992
Google Scholar
[21]
J.-L. Tang and J.-N. Wang, Measurement of chloride ion concentration in concrete structures with long-period grating technology, Smart Mater. Struct. 16 (2007) 665-672.
DOI: 10.1088/0964-1726/16/3/013
Google Scholar
[22]
J.-L. Tang and J.-N. Wang, Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles, Sensors, 7 (2008) 100-118.
DOI: 10.3390/s8010171
Google Scholar
[23]
G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, High temperature stability of long-period fiber gratings produced using an electric arc, J. Lightwave Technol. 19 (2001) 1574–1579.
DOI: 10.1109/50.956145
Google Scholar
[24]
S. W. James and R. P. Tatam, Optical fibre long-period grating sensors: characteristics and application, Meas. Sci. Technol. 14 (2003) R49–R61.
DOI: 10.1088/0957-0233/14/5/201
Google Scholar
[25]
V. Bhatia, D. K. Campbell, D. Sherr, G. D. Tiffanie, A. Z. Noel, A. Gregory, A. M. Kent, and R. O. Clau, Temperature-insensitive and strain-insensitive long-period gratings sensor for smart structures, Opt. Eng. 36 (1997) 1872-1876.
DOI: 10.1117/1.601379
Google Scholar
[26]
V. Bhatia, G. D. Tiffanie, A. Z. Noel, and R. O. Clau, Temperature-insensitive long-period grating for strain and refractive index sensing, Proc. SPIE 3042 (1997) 194-202.
Google Scholar
[27]
S. Khaliq, S. W. James, and R. P. Tatam, Fiber-optic liquid-level sensor using a long-period grating, Optics Lett. 26 (2001) 1224-1226.
DOI: 10.1364/ol.26.001224
Google Scholar
[28]
J.-N. Wang and C.-Y. Luo, Long-Period fiber grating sensors for the measurement of liquid level and fluid flow velocity, Sensors 12 (2012) 4578-4593.
DOI: 10.3390/s120404578
Google Scholar
[29]
R. Hou R, Z. Ghassemlooy, A. Hassan, C. Lu, and K. Dowker, Modeling of long-period fibre grating response to refractive index higher than that of cladding, Meas. Sci. Technol. 12 (2001) 1709-1713.
DOI: 10.1088/0957-0233/12/10/314
Google Scholar
[30]
V. Hackley and C. Ferraris, Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems; National Institute of Standards and Technology: Special Publication 946, Gaithersburg, MD, USA, 2001.
Google Scholar
[31]
L. Andrade, J. Petronílio, C. E. A. Maneschy, and D. O. A. Cruz, The Carreau-Yasuda fluids: a skin friction equation for turbulent flow in pipes and Kolmogorov dissipative scales. J. Braz. Soc. Mech. Sci. Eng. 24 (2007) 162-167.
DOI: 10.1590/s1678-58782007000200005
Google Scholar