[1]
N.Z Muradov, T.N. Veziroglu, "Green" path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energ. 33 (2008) 6804–6839.
DOI: 10.1016/j.ijhydene.2008.08.054
Google Scholar
[2]
N.Q. Ren, A.J. Wang, G.L Cao, J.F.Xu, L.F. Gao. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 27 (2009) 051-060.
Google Scholar
[3]
Fang, H.H.P., Zhang, T., Liu, H.,. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manage. 69 (2003) 149–156.
DOI: 10.1016/s0301-4797(03)00141-5
Google Scholar
[4]
Akutsu, Y., Li, Y.Y., Harada, H., Yu, H.Q.,. Effects of temperature and substrate concentration on biological hydrogen production from starch. Int. J. Hydrogen Energy 34, (2009) 2558-2566.
DOI: 10.1016/j.ijhydene.2009.01.048
Google Scholar
[5]
Y.C. Lo, Y. C. Su, C. L. Cheng, J.S. Chang. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis Int. J. Hydrogen Energy 36, (2011) 13955-13963.
DOI: 10.1016/j.ijhydene.2011.03.100
Google Scholar
[6]
L. Zhao, G. L. Cao, A. J. Wang, W. Q. Guo, H. Y. Ren, N. Q. Ren. Simultaneous Saccharification and Fermentation of Fungal Pretreated Cornstalk for Hydrogen Production Using Thermoanaerobacterium thermosaccharolyticum W16. Bioresour. Technol. (2013)
DOI: 10.1016/j.biortech.2013.01.144
Google Scholar
[7]
C. Sambusiti, F. Monlau, E. Ficara, H. Carrère, F. Malpei. A comparison of different pre-treatments to increase methane production from two agricultural substrates. Applied Energy 104 (2013) 62–70
DOI: 10.1016/j.apenergy.2012.10.060
Google Scholar
[8]
Mohammad J. Taherzadeh, and Keikhosro Karimi., Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci., 9, (2008) 1621-1651
DOI: 10.3390/ijms9091621
Google Scholar
[9]
Zhao, L., Cao, G.L., Wang, A.J., Ren, H.Y., Xu, C.J., Ren, N.Q. Enzymatic Saccharification of Cornstalk by Onsite Cellulases Produced by Trichoderma viride for Enhanced Biohydrogen Production. GCB Bioenergy (2012).
DOI: 10.1111/gcbb.12022
Google Scholar
[10]
Zhao, L., Cao, G.L., Wang, A.J., Ren, H.Y., Dong, D., Liu, Z.N., Guan, X.Y., Xu, C.J., Ren, N.Q., 2012. Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour. Technol. 114, 365-369.
DOI: 10.1016/j.biortech.2012.03.076
Google Scholar
[11]
Li, H., Kim, N.J., Jiang, M., Kang, J.W., Chang, H.N. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresour. Technol. 100, (2009) 3245–3251.
DOI: 10.1016/j.biortech.2009.01.021
Google Scholar
[12]
Ren, N.Q., Cao, G.L., Wang, A.J., Lee, D.J., Guo, W.Q., Zhu, Y.H. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy 33, (2008) 6124–6132.
DOI: 10.1016/j.ijhydene.2008.07.107
Google Scholar
[13]
Sluiter, A. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO., USA (Version 2006).
Google Scholar
[14]
Zhao, L., Cao, G.L., Wang, A.J., Guo, W.Q., Liu, B.F., Ren, H.Y., Ren, N.Q., Ma, F., Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier. Int. J. Hydrogen Energy 37, (2012b) 162-166.
DOI: 10.1016/j.ijhydene.2011.09.103
Google Scholar
[15]
Zhao, L., Cao, G.L., Yao, J., Ren, H.Y., Ma, F., Ren, N.Q., Wang, A.J. Optimization of immobilization parameters of Thermoanaerobacterium thermosaccharolyticum W16 on a new carrier for enhanced hydrogen production. RSC Adv. 2, (2012c) 7391-7395.
DOI: 10.1039/c2ra20870a
Google Scholar
[16]
K. Ohgren, R. Bura, J.Saddler, G. Zacchi. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98 (2007) 2503–2510
DOI: 10.1016/j.biortech.2006.09.003
Google Scholar
[17]
V.N. Nkemka, M. Murto. Biogas production from wheat straw in batch and UASB reactors: The roles of pretreatment and seaweed hydrolysate as a co-substrate. Bioresour. Technol. 128, (2013) 164–172
DOI: 10.1016/j.biortech.2012.10.117
Google Scholar
[18]
C. H. Liu, C.Y. Chang, C. L. Cheng, D. J. Lee, J. S. Chang. Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int J Hydrogen Energy 3 7 (2012) 15458-15464
DOI: 10.1016/j.ijhydene.2012.04.076
Google Scholar
[19]
Cao, G.L., Ren, N.Q., Wang, A.J., D. J. Lee. Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 3 4 (2009) 7182–7188.
DOI: 10.1016/j.ijhydene.2009.07.009
Google Scholar