Comparison of Different Pretreatment Methods to Increase Hydrogen Production from Cornstalk

Article Preview

Abstract:

Lignocellulosic biomass can be an ideal feedstock for fermentative hydrogen production if properly pretreated and hydrolyzed. In this research, to enhance hydrogen production from cornstalk, acid and alkali pretreatments were performed. Alkali pretreatment was conducted at 80°C for 60 min and room temperature for 7 days with the addition of 4% NaOH; acid pretreatments at 190°C, and 120°C for 10 min and 120 min, respectively, with the addition of 1.7% H2SO4. All the chemical components change of the substrates was detected. The highest lignin reduction of 75.6%, compared to untreated samples, was found at 80°C with 4% NaOH dosage. Under this pretreatment condition, highest increase in reducing sugar and hydrogen yield (up to 11.8 g/L and 71.8 ml/g-pretreated cornstalk) was obtained. The present results suggested an efficient pretreatment method to increase hydrogen production from lignocellulosic biomass.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

216-221

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.Z Muradov, T.N. Veziroglu, "Green" path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energ. 33 (2008) 6804–6839.

DOI: 10.1016/j.ijhydene.2008.08.054

Google Scholar

[2] N.Q. Ren, A.J. Wang, G.L Cao, J.F.Xu, L.F. Gao. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 27 (2009) 051-060.

Google Scholar

[3] Fang, H.H.P., Zhang, T., Liu, H.,. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manage. 69 (2003) 149–156.

DOI: 10.1016/s0301-4797(03)00141-5

Google Scholar

[4] Akutsu, Y., Li, Y.Y., Harada, H., Yu, H.Q.,. Effects of temperature and substrate concentration on biological hydrogen production from starch. Int. J. Hydrogen Energy 34, (2009) 2558-2566.

DOI: 10.1016/j.ijhydene.2009.01.048

Google Scholar

[5] Y.C. Lo, Y. C. Su, C. L. Cheng, J.S. Chang. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis Int. J. Hydrogen Energy 36, (2011) 13955-13963.

DOI: 10.1016/j.ijhydene.2011.03.100

Google Scholar

[6] L. Zhao, G. L. Cao, A. J. Wang, W. Q. Guo, H. Y. Ren, N. Q. Ren. Simultaneous Saccharification and Fermentation of Fungal Pretreated Cornstalk for Hydrogen Production Using Thermoanaerobacterium thermosaccharolyticum W16. Bioresour. Technol. (2013)

DOI: 10.1016/j.biortech.2013.01.144

Google Scholar

[7] C. Sambusiti, F. Monlau, E. Ficara, H. Carrère, F. Malpei. A comparison of different pre-treatments to increase methane production from two agricultural substrates. Applied Energy 104 (2013) 62–70

DOI: 10.1016/j.apenergy.2012.10.060

Google Scholar

[8] Mohammad J. Taherzadeh, and Keikhosro Karimi., Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci., 9, (2008) 1621-1651

DOI: 10.3390/ijms9091621

Google Scholar

[9] Zhao, L., Cao, G.L., Wang, A.J., Ren, H.Y., Xu, C.J., Ren, N.Q. Enzymatic Saccharification of Cornstalk by Onsite Cellulases Produced by Trichoderma viride for Enhanced Biohydrogen Production. GCB Bioenergy (2012).

DOI: 10.1111/gcbb.12022

Google Scholar

[10] Zhao, L., Cao, G.L., Wang, A.J., Ren, H.Y., Dong, D., Liu, Z.N., Guan, X.Y., Xu, C.J., Ren, N.Q., 2012. Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour. Technol. 114, 365-369.

DOI: 10.1016/j.biortech.2012.03.076

Google Scholar

[11] Li, H., Kim, N.J., Jiang, M., Kang, J.W., Chang, H.N. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresour. Technol. 100, (2009) 3245–3251.

DOI: 10.1016/j.biortech.2009.01.021

Google Scholar

[12] Ren, N.Q., Cao, G.L., Wang, A.J., Lee, D.J., Guo, W.Q., Zhu, Y.H. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy 33, (2008) 6124–6132.

DOI: 10.1016/j.ijhydene.2008.07.107

Google Scholar

[13] Sluiter, A. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO., USA (Version 2006).

Google Scholar

[14] Zhao, L., Cao, G.L., Wang, A.J., Guo, W.Q., Liu, B.F., Ren, H.Y., Ren, N.Q., Ma, F., Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier. Int. J. Hydrogen Energy 37, (2012b) 162-166.

DOI: 10.1016/j.ijhydene.2011.09.103

Google Scholar

[15] Zhao, L., Cao, G.L., Yao, J., Ren, H.Y., Ma, F., Ren, N.Q., Wang, A.J. Optimization of immobilization parameters of Thermoanaerobacterium thermosaccharolyticum W16 on a new carrier for enhanced hydrogen production. RSC Adv. 2, (2012c) 7391-7395.

DOI: 10.1039/c2ra20870a

Google Scholar

[16] K. Ohgren, R. Bura, J.Saddler, G. Zacchi. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98 (2007) 2503–2510

DOI: 10.1016/j.biortech.2006.09.003

Google Scholar

[17] V.N. Nkemka, M. Murto. Biogas production from wheat straw in batch and UASB reactors: The roles of pretreatment and seaweed hydrolysate as a co-substrate. Bioresour. Technol. 128, (2013) 164–172

DOI: 10.1016/j.biortech.2012.10.117

Google Scholar

[18] C. H. Liu, C.Y. Chang, C. L. Cheng, D. J. Lee, J. S. Chang. Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int J Hydrogen Energy 3 7 (2012) 15458-15464

DOI: 10.1016/j.ijhydene.2012.04.076

Google Scholar

[19] Cao, G.L., Ren, N.Q., Wang, A.J., D. J. Lee. Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 3 4 (2009) 7182–7188.

DOI: 10.1016/j.ijhydene.2009.07.009

Google Scholar