Sulfonated Polyphosphazene-Montmorillonite Hybrid Composite Membranes for Fuel Cells

Article Preview

Abstract:

A series of sulfonated polyphosphazene-organic montmorillonite hybrid membranes for direct methanol fuel cells (DMFCs) were prepared. The structure and characteristics of the obtained membranes were studied by testing their X-ray diffraction (XRD), water uptake, water swelling ratio, proton conductivity, thermal properties, methanol permeability and mechanical properties. The morphological analysis of the composite membranes indicated that the organic montmorillonite was uniformly distributed throughout the polymer matrix. Compared to the native sulfonated polyphosphazene membranes, the hybrid membranes showed better mechanical properties and selectivity for proton ions over methanol. The selectivity indicates that polyphosphazene-montmorillonite membranes may be promising electrolyte candidate for direct methanol fuel cells.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

744-752

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Hasani-Sadrabadi, E. Dashtimoghadam, F. S. Majedi and K. Kabiri: Journal of Power Sources, Vol. 190 (2009) No. 2, p.318.

DOI: 10.1016/j.jpowsour.2009.01.043

Google Scholar

[2] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath: Chemical Reviews, Vol. 104 (2004) No. 10, p.4587.

Google Scholar

[3] R. Devanathan, A. Venkatnathan and M. Dupuis: Journal of Physical Chemistry B, Vol. 111 (2007) No. 45, p.13006.

Google Scholar

[4] H. R. Allcock and R. M. Wood: Journal of Polymer Science Part B-Polymer Physics, Vol. 44 (2006) No. 16, p.2358.

Google Scholar

[5] Q. H. Guo, P. N. Pintauro, H. Tang and S. O'Connor: Journal of Membrane Science, Vol. 154 (1999) No. 2, p.175.

Google Scholar

[6] R. Wycisk, J. K. Lee and P. N. Pintauro: Journal of the Electrochemical Society, Vol. 152(2005) No. 5, p. A892.

Google Scholar

[7] M. A. Hofmann, C. M. Ambler, A. E. Maher, E. Chalkova, X. Y. Zhou, S. N. Lvov and H. R. Allcock: Macromolecules, Vol. 35 (2002) No. 17, p.6490.

DOI: 10.1021/ma020330z

Google Scholar

[8] Y. S. Sohn, Y. H. Cho, H. Baek and O. S. Jung: Macromolecules, Vol. 28 (1995) No. 22, p.7566.

Google Scholar

[9] R. Carter, R. Wycisk, H. Yoo and P. N. Pintauro: Electrochemical and Solid State Letters, Vol. 5 (2002) No. 9, p. A195.

DOI: 10.1149/1.1495916

Google Scholar

[10] K. Matsumoto, T. Higashihara and M. Ueda: Macromolecules, Vol. 41 (2008) No. 20, p.7560.

Google Scholar

[11] P. Bhavani and D. Sangeetha: Chinese Journal of Polymer Science, Vol. 30(2012) No. 4, p.548.

Google Scholar

[12] Y. M. Shang, S. G. Feng, Y. W. Wang, G. S. Liu, X. F. Xie, W. Q. Dong, J. M. Xu and V. K. Mathur: Journal of Membrane Science, Vol. 352 (2010) No. 1, p.14.

Google Scholar

[13] H. Tang, P. N. Pintauro, Q. H. Guo and S. O'Connor: Journal of Applied Polymer Science, Vol. 71(1999) No. 3, p.387.

Google Scholar

[14] H. Tang and P. N. Pintauro: Journal of Applied Polymer Science, Vol. 79 (2001) No. 1, p.49.

Google Scholar

[15] Kusmono, Z. A. Mohd Ishak, W. S. Chow, T. Takeichi and Rochmadi: Composites Part A: Applied Science and Manufacturing, Vol. 39 (2008) No. 12, p.1802.

DOI: 10.1016/j.compositesa.2008.08.009

Google Scholar

[16] R. Pomès and B. Roux: Biophysical Journal, Vol. 71 (1996) No. 1, p.19.

Google Scholar

[17] M. V. Fedkin, X. Y. Zhou, M. A. Hofmann, E. Chalkova, J. A. Weston, H. R. Allcock and S. N. Lvov: Materials Letters, Vol. 52 (2002) No. 3, p.192.

DOI: 10.1016/s0167-577x(01)00391-3

Google Scholar

[18] T. Agag and T. Takeichi: Polymer, Vol. 41 (2000) No. 19, p.7083.

Google Scholar