Preparation of Li2FeSiO4/C Composite Cathode Materials for Lithium Ion Batteries by Carbothermal Reduction Method

Article Preview

Abstract:

The Li2FeSiO4/C composite cathode material was synthesized by carbothermal reduction method using Li2CO3, Fe2O3 and (C2H5O) 4Si and sucrose as raw materials, The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and electrochemical test methods. The influence of sintering temperatures on the electrochemical properties of Li2FeSiO4/C was examined. The results indicated that the as-synthetized Li2FeSiO4 are orthorhombic structure. The highly pure Li2FeSiO4 material with uniform and nanosized particle was synthesized and showed a high specific capacity and good cycle performance by sintering at 600°C for 12h. The initial discharge capacity of Li2FeSiO4/C composite cathode material was 140.2 mAh/g at 0.2C rate in a potential range of 1.5-4.7V (vs. Li/Li+) at room temperature, and the discharge capacity was maintained at 141.7 mAh/g after 50 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

838-843

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Goodenough, J. B and Kim, Y : Chem. Mat. Vol. 22 (2009), p.587.

Google Scholar

[2] Xu, B,Qian, D,Wang, Z and Meng, Y. S : Materials Science and Engineering: R: Reports (2012).

Google Scholar

[3] Nyten, A,Abouimrane, A, Armand, M, Gustafsson, T and Thomas, J. O : Electrochem. Commun.Vol. 7 (2005), p.156.

Google Scholar

[4] Nyten, A, Kamali, S, Haggstrom, L, Gustafsson, T and Thomas, J. O : J. Mater. Chem. Vol. 16(2006), p.2266.

Google Scholar

[5] Rangappa, D, Murukanahally, K. D, Tomai, T, Unemoto, A and Honma, I : Nano Letters Vol. 12(2012), p.1146.

Google Scholar

[6] Chen, Z, Qiu, S, Cao, Y, Qian, J, Ai, X, Xie, K, Hong, X and Yang, H. X : Journal of Materials Chemistry A (2013).

Google Scholar

[7] Lv, D,Wen, W,Huang, X,Bai, J,Mi, J,Wu, S and Yang, Y : J. Mater. Chem. Vol. 21 (2011), p.9506.

Google Scholar

[8] Arroyo-de Dompablo, M. E,Armand, M,Tarascon, J. M and Amador, U : Electrochem. Commun. Vol. 8 (2006), p.1292.

Google Scholar

[9] Zaghib, K,Salah, A. A,Ravet, N,Mauger, A,Gendron, F and Julien, C. M : J. Power Sources Vol.160 (2006), p.1381.

DOI: 10.1016/j.jpowsour.2006.03.023

Google Scholar

[10] Larsson, P,Ahuja, R,Nyten, A and Thomas, J. O : Electrochem. Commun. Vol. 8 (2006), p.797.

Google Scholar

[11] Gong, Z. L,Li, Y. X,He, G. N,Li, J and Yang, Y : Electrochem. Solid State Lett. Vol. 11 (2008), p. A60.

Google Scholar

[12] Mi, Y,Hu, W,Dan, Y and Liu, Y : Materials Letters Vol. 62 (2008), p.1194.

Google Scholar

[13] Huang, B,Zheng, X and Lu, M : J. Alloy. Compd. Vol. 525 (2012), p.110.

Google Scholar

[14] Fan, X. Y,Li, Y,Wang, J. J,Gou, L,Zhao, P,Li, D. L,Huang, L and Sun, S. G : J. Alloy. Compd.Vol. 493 (2010), p.77.

Google Scholar

[15] Zhang, M,Chen, Q,Xi, Z,Hou, Y and Chen, Q : Journal of Materials Science Vol. 47 (2012), p.2328.

Google Scholar

[16] Weng, S. i,Yang, Z. n,Wang, Q. n,Zhang, J and Zhang, W : Electronic supplementary materialVol. 19 (2012), p.235.

Google Scholar

[17] Chen, C,Zhang, Y,Wang, F and Zou, J. Z : Advanced Materials Research Vol. 335 (2011), p.1364.

Google Scholar

[18] Barker, J,Saidi, M and Swoyer, J : Electrochemical and solid-state letters Vol. 6 (2003), p. A53.

Google Scholar

[19] Dominko, R,Bele, M,Gaberscek, M,Meden, A,Remskar, M and Jamnik, J : Electrochem. Commun. Vol. 8 (2006), p.217.

Google Scholar

[20] Liivat, A and Thomas, J. O : Solid State Ion. Vol. In Press, Corrected Proof (2009), p.58.

Google Scholar