A Matching Theorem in GFC-Spaces with Application to Saddle Points

Article Preview

Abstract:

In this paper, a matching theorem for weakly transfer compactly open valued mappings is established in GFC-spaces. As applications, a fixed point theorem, a minimax inequality and a saddle point theorem are obtained in GFC-spaces. Our results unify, improve and generalize some known results in recent reference.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

2867-2870

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Q. Khanh, N. H. Quan, J. C. Yao. Nonlinear Anal., Vol. 71(2009), p.1227.

Google Scholar

[2] N. X. Hai, P. Q. Khanh, N. H. Quan. Nonlinear Anal., Vol. 71(2009), p.6170.

Google Scholar

[3] Kai-Ting Wen. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce. Vol. 2(2011), p.923.

Google Scholar

[4] Kai-Ting Wen, He-Rui Li. 2011 World Congress on Engineering and Technology, Vol. 1(2011), p.543.

Google Scholar

[5] Kai-Ting Wen. Acta Anal. Funct. Appl., Vol. 14(3)( 2012), p.292. (In Chinese).

Google Scholar

[6] Kai-Ting Wen. Adv. Math. China, Vol. 39(3)(2010), p.331.

Google Scholar

[7] Kai-Ting Wen. J. Math. Res. Exposition, Vol. 29(6)(2009), p.1061.

Google Scholar

[8] W. A. Kirk, B. Sims, Xian-Zhi Yuan. Nonlinear Anal., Vol. 39(2000), p.611.

Google Scholar

[9] S. Park. Nonlinear Anal. TMA, Vol. 48(2002), p.869.

Google Scholar

[10] S. Park. Nonlinear Anal., Vol. 37(1999), p.467.

Google Scholar

[11] M. S. R. Chowdhury, E. Tarafder, K. K. Tan. Nonlinear Anal., Vol. 43(2001), p.253.

Google Scholar

[12] R. U. Verma. J. Math. Anal. Appl., Vol. 232(1999), p.428.

Google Scholar

[13] Hui-Li Zhang. J. Appl. Anal., Vol. 9(2)(2003), p.225.

Google Scholar

[14] Xian Wu. J. Appl. Anal., Vol. 6(2)(2000), p.283.

Google Scholar

[15] Feng-Juan Chen, Zi-Fei Shen. Adv. Math. China, Vol. 34(5)(2005), p.614.

Google Scholar

[16] Xian-Zhi Yuan. J. Math. Anal. Appl., Vol. 235(1999), p.315.

Google Scholar

[17] P. J. Watson. Bull. Austral Math. Soc., Vol. 59(1999), p.297.

Google Scholar