[1]
P. N. Balister, B. Bollobas, R. H. Schelp. Vetex Distinguishing Colorings of Graphs with Discrete Mathematics, 252 (2002) 17-29.
DOI: 10.1016/s0012-365x(01)00287-4
Google Scholar
[2]
J. A. Bondy, U.S.R. Murty. Graph Theory with Applications. The MaCmillan Press ltd, London and Basingstoke, New York, (1976).
Google Scholar
[3]
J. A. Gallian. A dynamic survey of graph labelling. The Electronic Journal of Combinatorics, 2009 (14): DS6.
Google Scholar
[4]
R. B. Gnanajothi. Topics in graph theory. Ph. D. Thesis, Madurai Kamaraj University, (1991).
Google Scholar
[5]
Sanjay Jaina, and Sandeep Krishna. Graph Theory and the Evolution of Autocatalytic Networks. arXiv: nlin. AO/0210070v1 30 Oct (2002).
Google Scholar
[6]
Liu Xinsheng, Liu Yuanyuan, Yao Bing. Odd-gracefulness of dragon graphs. The journal of Lanzhou University of Thecnology, 2013, 4: 13-17.
Google Scholar
[7]
Liu Xingsheng, An Mingqiang, Gao Yang. An upper bound for the adjacent-vertex distinguishing acyclic edge chromatic number of a graph. Acta Mathematicae Sinica, 2009, 25 (1): 137-140.
DOI: 10.1007/s10255-007-7020-y
Google Scholar
[8]
Liu Xinsheng, An Mingqiang, Gao Yang. An upper bound for the adjacent vertex-distinguishing total chromatic number of a graph. Journal of Mathematical Research \& Exposition, 2009, 29 (2): 343-348.
Google Scholar
[9]
Zhongfu Zhang, Linzhong Liu, Jianfang Wang. Adjacent Strong Edge Coloring of Graphs. Applied Mathematics Letters, 15 (5) (2002) 623-626.
DOI: 10.1016/s0893-9659(02)80015-5
Google Scholar
[10]
Xiang'en Chen. On the Adjacent Vertex Distinguishing Total Coloring Numbers of Graphs with . Discrete Mathematics 308 (2008) 003-4007.
DOI: 10.1016/j.disc.2007.07.091
Google Scholar
[11]
Haiying Wang. On the Adjacent Vertex-Distinguishing Total Chromatic Numbers of the Graphs with . J. Comb. Optim., 14 (2007) 87-109.
DOI: 10.1007/s10878-006-9038-0
Google Scholar
[12]
Jonathan Hulgan. Concise Proofs for Adjacent Vetex-Distinguishing Total Colorings. Discrete Mathematics, 309 (2009) 2548-2550.
DOI: 10.1016/j.disc.2008.06.002
Google Scholar
[13]
Bing Yao, Hui Cheng, Ming Yao, Meimei Zhao. A note on strongly graceful trees. Ars Combinatoria, 2009, 92: 155-169.
Google Scholar
[14]
Bing Yao, Hui Cheng, Ming Yao and Meimei Zhao. A Note on Strongly Graceful Trees. Ars Combinatoria, 92 (2009), 155-169.
Google Scholar
[15]
Zhongfu Zhang, Xiang'en Chen, Jingwen Li, Bing Yao, et al. On the Adjacent Vertex-Distinguishing Total Coloring of Graphs. Science in China Series A, 48 (3) (2005) 289-299.
DOI: 10.1360/03ys0207
Google Scholar
[16]
Xiangqian Zhou, Bing Yao, Xiang'en Chen and Haixia Tao. A proof to the odd-gracefulness of all lobsters. Ars Combinatoria 103 (2012), 13-18.
Google Scholar