[1]
R. Chellappa, C.L. Wilson, S. Sirohey, Human and Machine Recognition of Faces: A Survey, Proceedings of the IEEE, Vol. 83, No. 5, May. 1995, pp.705-740.
DOI: 10.1109/5.381842
Google Scholar
[2]
S. Ranganath and K. Arun, Face Recognition Using Transform Features and Neural Network, Pattern Recognition, Vol. 30, Oct. 1997, pp.1615-1622.
DOI: 10.1016/s0031-3203(96)00184-7
Google Scholar
[3]
Adini, Y., Moses, Y., Ullman, S., Face Recognition: The Problem of Compensating for Changes in Illumination Direction, IEE Transactions Vol. 19, No. 7, Jun. 1997, pp.721-732.
DOI: 10.1109/34.598229
Google Scholar
[4]
G. Guodong, S. Li, and C. Kapluk. Face recognition by support vector machines, In Proc. IEEE International Conference on Automatic Face and Gesture Recognition, Mar. 2000, p.196–201.
DOI: 10.1109/afgr.2000.840634
Google Scholar
[5]
C. Nastar and N. Ayache, Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, no. 11, Nov. 1996, p.1, 067-1, 079.
DOI: 10.1109/34.544076
Google Scholar
[6]
Yugang Jiang, Ping Guo. Face Recognition by Combining Wavelet Transform and k-Nearest Neighbor., Journal of Communication and Computer, Vol. 2, Sep. 2005, pp.50-53.
Google Scholar
[7]
Haifeng Hu. Variable lighting face recognition using discrete wavelet transform[J]. Pattern Recognition Letters, 2012, 32(13): 1526–1534.
DOI: 10.1016/j.patrec.2011.06.009
Google Scholar
[8]
E. Osuna, R. Freund, and F. Girosi, Training support vector machines: An application to face detection, Proc. Computer Visionand Pattern Recognition, Vol. 3, Jun. 1997, p.130–136.
DOI: 10.1109/cvpr.1997.609310
Google Scholar
[9]
V. Vapnik. Statistical learning theory. JohnWiley and Sons, New York, (1998).
Google Scholar