The Properties of Analogous to Dedekind Sums

Article Preview

Abstract:

The distribution problem of a sum analogous to Dedekind sums is studied by using the mean value theorem of the Dirichlet L-functions and the property of Dedekind sums , and an interesting mean square value formula is given.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

3224-3227

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dedekind R. Erlauterungen zu zwei Fragmenten von Riemann – Riemann's Gesammelte Math,2ed[M]. New York:Werke, Dover, 1892.

Google Scholar

[2] Berndt B C. Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan[J] . J Reine Angew Math, 1978, 303: 332-365.

DOI: 10.1515/crll.1978.303-304.332

Google Scholar

[3] Apostol T M. Modular Functions and Dirichlet Series in Number Theory[M]. New York: Springer-Verlag,1976.

Google Scholar

[4] Zhang Wenpeng. A note on the mean square value of the Dedekind Sums[J]. Acta Mathematica Hungarica, 2000, 86: 277-291.

Google Scholar

[5] Sitaramachandraro R. Dedekind and Hardy sums[J]. Acta Arithmetica, 1978, 48: 325-340.

Google Scholar

[6] Zhang Wenpeng. On the mean values of Dedekind Sums[J]. Journal de Theorie des Nombres, 1996, 8: 429-442.

DOI: 10.5802/jtnb.179

Google Scholar