The Double (or Multiple) BSRs Observations and their Tentative Interpretations

Article Preview

Abstract:

Gas hydrate is a solid ice-like compound and is stable at low temperature and high pressure conditions found beneath permafrost and in marine sediments on continental margins offshore. In the marine environment, the bottom-simulating reflector (BSR) in seismic reflection profiles is interpreted to indicate the base of the gas hydrate stability zone (GHSZ).In many locations two or more sub-parallel BSRs have been reported. We not only compared the BSRs characteristics from reported areas but also discussed the mechanism of GHSZ shifts by climate change, sedimentation process and tectonic movement. We also considered the mix gases composition hydrate stability in certain marine environment and gave a simple model for the BSR differences on water depth.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

467-475

Citation:

Online since:

August 2013

Authors:

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.D. Sloan: Clathrate hydrates of natural gases. Second edition, edtied by D. Marcel Inc.:New York. (1998).

Google Scholar

[2] E.D. Sloan, C.A. Koh, A.K. Sum: Gas Hydrate Stability and Sampling: The Future as Related to he Phase Diagram. Energies.Vol.3 (2010), 1991-2000.

DOI: 10.3390/en3121991

Google Scholar

[3] E. Thomas: Clathrates: little known components of the global carbon cycle. Wesleyan University. http://ethomas.web.wesleyan.edu/ees123/clathrate.htm.

Google Scholar

[4] B.E. Tucholke, G.M. Bryan, and J.I. Ewing:. Gas-hydrate horizons detected in seismic-profiler data from the western North Atlantic. AAPG Bull., 61(1977), 698-707.

DOI: 10.1306/c1ea3dc5-16c9-11d7-8645000102c1865d

Google Scholar

[5] T.H. Shipley, M.H. Houston, R.T. Buffler, F.J. Shaub, K.J. McMillen, J.W. Ladd and J.L. Worzel: Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull.,Vol.63 (1979), 2204-2213.

DOI: 10.1306/2f91890a-16ce-11d7-8645000102c1865d

Google Scholar

[6] M. Yamano, S. Uyeda, Y. Aoki and T. H. Shipley: Estimates of heat flow derived from gas hydrate,Geology, Vol.10(1982), 339-343.

DOI: 10.1130/0091-7613(1982)10<339:eohfdf>2.0.co;2

Google Scholar

[7] G.R. Dickens and M.S. Quinby-Hunt: Methane hydrate stability in seawater, Geophys. Res. Lett., 2(1994), 2115-2118.

DOI: 10.1029/94gl01858

Google Scholar

[8] J. Posewang and J. Mienert: The enigma of double BSRs: indicators of changes in the hydrate stability field? Geo-marine Letters. Vol.19 (1999),157-163.

DOI: 10.1007/s003670050103

Google Scholar

[9] K. Andreassen, J. Minenert, P. Bryn and S.C. Singh: A double gas-hydrate related bottom-simulating reflector at the Norwegian continental margin.in Gas Hydrate: Challenages for the future, edited by G. D. Holder and P.R. Bishnoi, Ann. N. Y. Acad SCi., Vol.912 (2000), 126-135.

DOI: 10.1111/j.1749-6632.2000.tb06766.x

Google Scholar

[10] S. Bouriak, A. Volkonskaia and V. Galaktionov: 'Split' strata-bounded gas hydrate BSR below deposits of the Storegga Slid and at the southern edge of the Vøring Plateau. Marine Geology, Vol.195(2003), 301-308.

DOI: 10.1016/s0025-3227(02)00694-1

Google Scholar

[11] S. Bünz and J. Mienert: Acoustic imaging of gas hydrate and free gas at Storegga Slide, Geophysical Research, Vol.109(2004).

DOI: 10.1029/2003jb002863

Google Scholar

[12] J. Ashi, H. Tokuyama and A. Taira: Distribution of methane hydrate BSRs and its implication for prism growth in the Nankai Trough. Marine Geology Vol.187(2002),177-191.

DOI: 10.1016/s0025-3227(02)00265-7

Google Scholar

[13] J-P. Foucher, H. Nouzé and P. Henry: Observation and tentative interpretation of a double BSR on the Nankai slop. Marine Geology, Vol.187(2002),161-175.

DOI: 10.1016/s0025-3227(02)00264-5

Google Scholar

[14] M.J. Hornbach, W.S. Holbrook, A.W. Gorman, K.L. Hackwith, D. Lizarralde and I. Pecher: Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics, Vol.68 (2003), 92-100.

DOI: 10.1190/1.1543196

Google Scholar

[15] N.L. Bangs, R.J. Musgrave and A.M. Trehu: Upward shif in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. Geophysical Research Vol11 (2005),, B03012.

DOI: 10.1029/2004JB003293

Google Scholar

[16] R. Geletti and M. Busettti: A double simulating reflector in the westen Ross Sea, Antractic.Geophysical Research, Vol.116 (2011), B04101.

DOI: 10.1029/2010JB007864

Google Scholar

[17] I. Popescu, M.D. Batist, G. Lericolais, H. Nouzé, J. Poort, N. Panin, W. Versteeg and H. Gillet: Multiple bottom-simulating reflectors in the Black Sea: Potential proxies of past climate conditions. Marine Geology Vol.277 (2006),163-176.

DOI: 10.1016/j.margeo.2005.12.006

Google Scholar

[18] R.D. Hyndman and E.E. Davis: A mechanism for the formation of methane hydrate and seafloor bottom simulating reflector by vertical fluid expulision. J. Geophys. Res.Vol.97 (1992), 7025 – 7041.

DOI: 10.1029/91jb03061

Google Scholar

[19] N. Ganguly, G.D. Spence, N.R. Chapman and R.D. Hyndman: Heat flow variations from bottom simulating reflectors on the Cascadia margin, Marine Geology, Vol.164 (2000), 53-68.

DOI: 10.1016/s0025-3227(99)00126-7

Google Scholar

[20] W.E. Harrison, R. Hesse and J.M. Gieskes: Relationship between sedimentary facies and interstitial water chemistry of slope, trench, and Cocos plate sites from the Middle America Trench transect, active margin off Guatemala, Deep Sea Drilling Project Leg 67. In Aubouin, J., von Huene, R., et al., Init. Repts. DSDP, 67: Washington (U.S. Govt. Printing Office), (1982), 603-614.

DOI: 10.2973/dsdp.proc.67.129.1982

Google Scholar

[21] G. Westbrook, B. Carson and R. Musgrave:Shipboard Scientific Party, Init.Rep. ODP 146(1993),630 P.

Google Scholar