Temperature Dependent Solid-Liquid Extraction Behavior of Rare Earths Using N-Butyl Pyridinium Hexafluorophosphate with Benzoyl Acetone

Article Preview

Abstract:

Temperature dependent solid-liquid extraction (SLE) behavior of six rare earth elements (REs) was investigated using N-butyl pyridinium hexafluorophosphate ([BPy]PF6) as an ionic liquid solvent and benzoyl acetone (HA) as an extractant at 80 °C. Parameters including the amount of [BPy]PF6, HA concentration, extraction time, extraction temperature and pH were investigated and optimized. The extracted species was neutral REA(n-1)Cl (n-1 = 3 or 2) in the REn+-[BPy]PF6-HA SLE system. The extraction percentage of REn+ could be 100% at stated pH and HA concentration. The recovery of REn+ extracted into [BPy]PF6 can be achieved using the mixture of 0.1 mol·L-1 ClCH2CO2H and 0.2 mol·L-1 HCl as stripping agents. REs were extracted into solid ionic liquid phase with smaller volume and concentrated to some extent. Furthermore the temperature dependent SLE allows to recover [BPy]PF6 after the extraction procedures. These results indicate that the proposed procedure can be used for the preconcentration and separation of REs using [BPy]PF6 with high melting point.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

906-910

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Welton, Chem. Rev. 99, (1999) 2071-2083.

Google Scholar

[2] S. Chun, S.V. Dzyuba, R.A. Bartsch, Anal. Chem. 73, (2001) 3737-3741.

Google Scholar

[3] D.L. Zhang, Y.F. Deng, C.B. Li, J. Chen, J. Sep. Sci. 31, (2008) 1060-1066.

Google Scholar

[4] A.J. Carmichael, K.R. Seddon, J. Phys. Org. Chem. 13, (2000) 591-595.

Google Scholar

[5] J.L. Kaar, A.M. Jesionowski, J.A. Berberich, R. Moullton, A.J. Russel, J. Am. Chem. Soc. 125, (2002) 4125-4131.

Google Scholar

[6] S.H. Lee, S.B. Lee, Chem. Commun. 27, (2005) 3469-3471.

Google Scholar

[7] T.R. Zhan, X.Y. Sun, X.Z. Wang, W. Sun, W. Hou, Talanta 82, (2010) 1853-1857.

Google Scholar

[8] M. Koel, Critical Rev. Anal. Chem. 35, (2005) 177-192.

Google Scholar

[9] S. Dai, Y.H. Ju, C.E. Barnes, J. Chem. Soc. Dalton Trans. 8, (1999) 1201-1202.

Google Scholar

[10] S. Chun, S.V. Dzyuba, R.A. Bartsch, Anal. Chem. 73, (2001) 3737-3741.

Google Scholar

[11] H. Luo, S. Dai, P.V. Bonnesen, Anal. Chem. 76, (2004) 2773-2779.

Google Scholar

[12] G.T. Wei, Z. Yang, C.J. Chen, Anal. Chim. Acta 488, (2003) 183-192.

Google Scholar

[13] T. Ajioka, S.Oshima, N. Hirayama, Talanta 74, (2008) 903-908.

Google Scholar

[14] T. Tsukatami, H. Katano, H. Tatsumi, M. Deguchi, N. Hiyarama, Anal. Sci. 22, (2006) 199-200.

Google Scholar

[15] Z.W. Pan, G.Q. Li, L.B Lin, Adv. Mater. Res. 306-307, (2011) 1524-1527.

Google Scholar

[16] Z.W. Pan, C. Ma, Y.W. Zhang, Y.X. Huang, X.L. Chen, X.P. Zhang, Adv. Mater. Res. 335-336, (2011) 1428-1432.

Google Scholar

[17] Z.W. Pan, C. Ma, H.L. Zhou, T. Lian, C.Y. Lai, C. Li, App. Mech. Mater. 117-119, (2011) 1103-1106.

Google Scholar

[18] J.Z. Gao, B. Peng, H.Y. Fan, J.W. Kang, Talanta 43, (1996) 1721-1725.

Google Scholar

[19] J.Z. Gao, Z.W. Pan, X.Z. Du, J.W. Kang, G.B. Bai, Rare Metals 12, (1993) 198-202.

Google Scholar

[20] Y. Zhu, C. Ching, K. Carpenter, R. Xu, S. Selvaratnam, N.S. Hosmane, J.A. Maguire, App. Organometa. Chem. 17, (2003) 346-350.

Google Scholar

[21] Experimental curriculum group of physical chemistry, Department of Chemistry, Beijing University, Experimentation of physical chemistry (in Chinese), Beijing University Press, 1981.

Google Scholar

[22] Z. Marczenko, Spectrophotometric Determination of Elements, Wiley, New York, 1976.

Google Scholar