[1]
B. Ayaz, A.N. Bilge: The possible usage of ex-ADU uranium dioxide fuel pellets with low-temperature sintering. Nucl. Mater. Vol. 280 (2000), pp.45-50.
DOI: 10.1016/s0022-3115(00)00033-7
Google Scholar
[2]
B. F. Pei, A. N. Duan: ADU technology and its effect on product characteristics. Nucl. PowerEng. Technol. Vol. 7 (1994), pp.41-50.
Google Scholar
[3]
J. H. Yang, et al.: Microwave process for sintering of uranium dioxide. Nucl. Mater. Vol. (325)2004, pp.210-216.
Google Scholar
[4]
Y. S. Kim: A thermodynamic evaluation of the U-O system from UO2 to U3O8. Nucl. Mater. Vol. 279(2000), pp.173-180.
Google Scholar
[5]
L. Yingwei et al.: Prediction model of ammonium uranyl carbonate calcination by microwave heati ng using incremental improved B-P neural network. Nucl. Eng. Des. Vol. 241(2011) p.1909-(1913).
DOI: 10.1016/j.nucengdes.2010.12.017
Google Scholar
[6]
L. Hongdong, et al.: Support vector machines and its application in chemistry. Chemometr. Intell. Lab. Vol. 95(2009), pp.188-198.
Google Scholar
[7]
V. Vapnik: The Nature of Statistical Learning Theory. 2rd. (Springer Publications, New York 1999).
Google Scholar
[8]
V. Vapnik: Statistical Learning Theory. (Wiley Publication, New York 1998).
Google Scholar
[9]
C. Cortes, V. Vapnik: Mach. Learn. Vol. 20 (1995), pp.273-97.
Google Scholar
[10]
N. Cristianini and J. Shawe-Taylor: An Introduction to Support Vector Machines. (: Cambridge University Press Publications, Cambridge 2000).
Google Scholar
[11]
Y. Biao, L. Wei, L. Lijun, P. Jinhui et al.: Support vector machine and its predicting stability of partially stabilized zirconia by microwave heating preparation. In: Advance Materials Research, Vol. 382(2012) pp.281-288.
DOI: 10.4028/www.scientific.net/amr.382.281
Google Scholar
[12]
U. Thissen, R.V. Brakel, A.P. de Weijer, W.J. Melssen and L.M.C. Buydens: Using support vector machines for time series prediction. Chemometr. Intell. Lab. Vol. 69(2003), pp.35-49.
DOI: 10.1016/s0169-7439(03)00111-4
Google Scholar
[13]
A.C. Lorena, A.C.P.L.F. de Carvalho: Protein cellular localization prediction with Support Vector Machines and Decision Trees. Computer Biology Medicine. Vol. 37(2007), pp.115-125.
DOI: 10.1016/j.compbiomed.2006.01.003
Google Scholar
[14]
G. Corani and M. Gatto: Structural risk minimization: a robust method for density-dependence detection and model selection. J. Ecography. Vol. 30(2007), pp.400-416.
DOI: 10.1111/j.0906-7590.2007.04863.x
Google Scholar
[15]
Y. Biao, P. Jinhui et al.: Acid-pickling plates and strips speed control system by microwave heating based on self-adaptive fuzzy PID algorithm. J. Cent. South Univ. Vol. 19(2012), pp.2179-2186.
DOI: 10.1007/s11771-012-1262-4
Google Scholar
[16]
J. H. Hong, J. K. Min, et al.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with naїve Bayes classifiers. J. Pattern Recogn. Vol. 41(2008), pp.662-671.
DOI: 10.1016/j.patcog.2007.07.004
Google Scholar
[17]
Chang C.C., Lin C.J., 2001. LIBSVM-A Library for Support Vector Machines. Software. Information on http: /www. csie. ntu. tw/~cjlin/libsvm.
Google Scholar
[18]
ECRG-Toolbox, 2011. Information on http: /www. shef. ac. uk/acse/research/ecrg/getgat. html.
Google Scholar
[19]
Y. Biao, P. Jinhui, S. Hezhou et al.: Optimizing PID controller based on Genetic algorithm for industrial microwave heating device [J]. JDCTA: International Journal of Digital Content Technology and its applications. Vol. 6(2012), pp.475-482.
DOI: 10.4156/jdcta.vol6.issue23.54
Google Scholar