[1]
A. R. Sarmani, S. J. Sheih, F. R. Mahamd Adikan, et al. Spectral gain characteristics induced by 980 nm pumping band in a gain-flattened EDFA. Laser Physics, 2010, 20(9): 1824-1828.
DOI: 10.1134/s1054660x10170135
Google Scholar
[2]
C. H. Yeh, T. T. Huang, M. C. Lin, et al. Simultaneously gain-flattened and gain-clamped erbium fiber amplifier, Laser Physics, 2009, 19(6) : 1246-1251.
DOI: 10.1134/s1054660x09060115
Google Scholar
[3]
Y. Jin, Q. Dou, Y. Liu et al, Gain-clamped dual-stage L-band EDFA by using backward C-band ASE, Optics Communications, 2006, 266(2): 390–392.
DOI: 10.1016/j.optcom.2006.05.006
Google Scholar
[4]
Zhou Yaxun, Wang Sen, Chen Fen, et al. Study of gain-clamped characteristics for broadband bismuth-based erbium-doped fiber amplifier. Infrared and Laser Engineering, 2011, 40(3): 520-524 (in Chinese).
Google Scholar
[5]
Q. Wang, Y. Zhao. Output power characteristics of C+L-band erbium-doped superfluorescent fiber source. Microwave and Optical Technology Letters, 2011, 53(10): 2212-2215.
DOI: 10.1002/mop.26231
Google Scholar
[6]
J. J. Tian, Y. Yao, Y. X. Sun, et al. Flat broadband erbium-doped fiber ASE source based on symmetric nonlinear optical loop mirror. Laser Physics, 2010, 20(8): 1760-1766.
DOI: 10.1134/s1054660x10150223
Google Scholar
[7]
A. A. A. Bakar, M. A. Mahdi, M. H. Al-Mansoori, et al. Single-stage gain-clamped L-band EDFA with C-band ASE saturating tone. Laser Physics, 2009, 19(5): 1026-1029.
DOI: 10.1134/s1054660x09050259
Google Scholar
[8]
Ou P, Cao B, Zhang C X, et al. Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fiber grating. Electron. Lett, 2008, 44(3): 187-189.
DOI: 10.1049/el:20082948
Google Scholar
[9]
Wang T SH, Wang K, Guo Y B, et al. Experimental investigation on high flattening er-doped C+L-band super-fluorescent fiber source. Journal of Optoelectronics·Laser, 2006, 17(7): 821-823. (in Chinese).
Google Scholar
[10]
Wang Rui, Li Xu-you, ZHang Yong. Fiber amplifier source for high accurate fiber-optic gyroscope. Infrared and Laser Engineering, 2008, 37(4): 732-734. (in Chinese).
Google Scholar
[11]
Wang L A, Lee C T, You G W. Polarized erbium-doped superfluorescent fiber source utilizing double-pass backward configuration. Applied Optics, 2005, 44(1): 77-82.
DOI: 10.1364/ao.44.000077
Google Scholar
[12]
H. Chen, G.W. Schinn. Hybrid broadband superfluorescent fiber source consisting of both thulium-doped fiber and erbium-doped fiber. Optics Communications, 2004, 229 (1): 141–146.
DOI: 10.1016/j.optcom.2003.10.014
Google Scholar
[13]
Wang X L, Ming H, Wang A T, et al. C+L-band erbium-doped fiber broadband light source using one-stage configuration. Chinese J. Lasers, 2006, 33(2): 166-170. (in Chinese).
Google Scholar
[14]
P. Wang, W. A. Clarkson. High-power, single-mode, linearly polarized, ytterbium-doped fiber superfuorescent source. Optics Letters, 2007, 32(17): 2605-2607.
DOI: 10.1364/ol.32.002605
Google Scholar
[15]
Liu Y. G, Qiao X. G, Jia Zh. A, et al. Optimization and study on a high-permance ASE fiber Source, Journal of optoelectronics·laser, 2011, 22(10): 1475-1478. (in Chinese).
Google Scholar