Comparisons on the Estimation of Latent Trait between Fuzzy Regression and Traditional Regression

Article Preview

Abstract:

The purpose of this study is to compare the estimation on latent trait between fuzzy regression and traditional regression. It is assumed that manifest data from fuzzy linguistic questionnaire and traditional questionnaire is used to estimate the latent trait of task-taker. Two kinds of scoring from triangular fuzzy number is to represent the Likert scale. The factors of data simulation include type of fuzzy number, number of task-taker and number of item. The results show that fuzzy regression performs well than traditional regression. Based on the findings of this study, some suggestions and recommendations are discussed for future research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-257

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. J. Van der Linden, and C.A.W. Glas: Computerized Adaptive Testing: Theory and Practice. (Boston, MA: Kluwer 2000).

Google Scholar

[2] L. A. Zadeh: Information and Control Vol. 8 (1965) pp.338-353.

Google Scholar

[3] Y. H. Lin, and J. M. Yih: Applied Mechanics and Materials, Vol. 55-57 (2011) pp.2197-2201.

Google Scholar

[4] T. J. H. M. Eggen, and G. J. J. M. Straetmans: Educational and Psychological Measurement Vol. 60 (2000) pp.713-734.

Google Scholar

[5] N. A. Thompson, and D. J. Weiss: Practical Assessment, Research & Evaluation Vol. 16 (2011) pp.1-9.

Google Scholar

[6] H. Zimmermann: Fuzzy Set Theory and Its Applications ( Boston: Kluwer Academic Publishers 2001)

Google Scholar

[7] G. J. Klir, and B. Yuan: Fuzzy Sets and Fuzzy Logic: Theory and Applications (Upper Saddle River, NJ: Prentice Hall 1995)

DOI: 10.1021/ci950144a

Google Scholar

[8] J. Y. Halpern: Reasoning about Uncertainty (Cambridge, Mass: MIT Press 2003).

Google Scholar

[9] Y. H.. Chang, and B. M. Ayyub: Fuzzy Sets and Systems Vol. 119 (2001) p.187–203.

Google Scholar

[10] M. M. Nasrabadi, E. Nasrabadi, and A. R. Nasrabady: Applied Mathematics and Computation Vol. 163 (2005) p.245–251

DOI: 10.1016/j.amc.2004.02.008

Google Scholar

[11] H. Tanaka, I. Hayashi, and J. Watada: European Journal of Operational Research Vol. 40 (1989) pp.389-396.

Google Scholar

[12] M. S. Yang, and T. S. Lin: Fuzzy Sets and Systems Vol. 126 (2002) p.389–399.

Google Scholar

[13] W. Näther: Computational Statistics & Data Analysis Vol. 51 (2006) p.235–252.

Google Scholar

[14] P. Lin, B. L. Wu, and J. Watada: International Journal of Innovative Computing, Information and Control, Vol.8 (2012) pp.7437-7450.

Google Scholar

[15] J. Kacprzyk, and M. Fedrizzi: Fuzzy regression analysis (Warsaw: Springer-Verlag 1992)

Google Scholar

[16] H. Tanaka, S. Uejima, and K. Asai: IEEE Syst., Man, Cybern., SMC-12 (1982) pp.903-907.

Google Scholar

[17] B. L. Wu, and N. F. Cheng: Journal of the Chinese Statistical Association Vol. 36 (1998) pp.399-420.

Google Scholar