Research Based on Dependencies of Luminescent Properties of CdTe Quantum Dots with TGA as Surfactant

Article Preview

Abstract:

We investigated the optical characterization of luminescent thioglycolic acid (TGA) stabilized CdTe quantum dots (CdTe-QD) synthesized in water. The influence of stabilizing agents on the luminescent properties of water-soluble CdTe quantum dots (QDs) was described. It is found that QDs can be synthesized easily when TGA is chosen as stabilizing agent and TGA leads to preparation of highly luminescent QDs due to the secondary effects of bonds between Cd2+ and sulfhydryl groups. The absorption wavelength and PL stability of TGA-CdTe are also characterized. Size can be controlled between 2.0 nm to 4.0 nm. The TGA-CdTe QDs prepared at 2 h reaction time possess excellent luminescent properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

715-720

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen Liang-dong, Liu Jia, Yu Xue-feng, He Man, Pei Xiao-feng, Tang Zhao-you, Wang Qu-quan, Pang Dai-wen, Li Yan. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis[J]. Biomaterials, 2008, 29(31): 4170−4176.

DOI: 10.1016/j.biomaterials.2008.07.025

Google Scholar

[2] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22(8): 969−976.

DOI: 10.1038/nbt994

Google Scholar

[3] Cai W B, Shin D W, Chen K, Gheysens O, Cao Q Z, Wang S X, Gambhir S S, Chen X Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects [J]. Nano Lett, 2006, 6(4): 669−676.

DOI: 10.1021/nl052405t

Google Scholar

[4] Yu W W, Qu L H, Guo W Z, Peng X G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem Mater, 2003, 15(14): 2854−2860.

DOI: 10.1021/cm034081k

Google Scholar

[5] Liu Y S, Sun Y H, Vernier P T, Liang C H, Chong S Y C, Gundersen M A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells [J]. J Phys Chem C, 2007, 111(7): 2872−2878.

DOI: 10.1021/jp0654718

Google Scholar

[6] Kapitonov A M, Stupak A P, Gaponenko S V, Petrov E P, Rogach A L, Euchmulier A. Luminescence properties of thiol-stabilized CdTe nanocrystals [J]. J Phys Chem B, 1999, 103(46): 10109−10113.

DOI: 10.1021/jp9921809

Google Scholar

[7] Liu Y F, Chen W, Joly A G, Wang Y Q, Pope C, Zhang Y B, Bovin J O, Sherwood P. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen [J]. J Phys Chem B, 2006, 110(34): 16992−17000.

DOI: 10.1021/jp063085k

Google Scholar

[8] Talapin D V, Rogach A L, Shevchenko E V, Kornowski A, Haase M, Weller H. Dynamic distribution of growth rates within the ensembles of colloidal II−VI and III−V semiconductor nanocrystals as a factor governing their photoluminescence efficiency [J]. J Am Chem Soc, 2002, 124(20): 5782−5790.

DOI: 10.1021/ja0123599

Google Scholar

[9] Mattoussi H, Mauto J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, BAWENDI M G. Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J Am Chem Soc, 2000, 122(49): 12142−12150.

DOI: 10.1021/ja002535y

Google Scholar

[10] Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes [J]. J Phys Chem B, 2002, 106(29): 7177−7185.

DOI: 10.1021/jp025541k

Google Scholar

[11] Zhang Hao, Zhou Zhen, Yang Bai. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J Phys Chem B, 2003, 107(1): 8−13.

DOI: 10.1021/jp025910c

Google Scholar

[12] Talapin D V, Haubold S, Rogach A L, Kornowski A, Haase M, Weller H. A novel rganometallic synthesis of highly luminescent CdTe nanocrystals[J]. J Phys Chem B, 2001, 105(12): 2260−2263.

DOI: 10.1021/jp003177o

Google Scholar

[13] Rogach A L, Katsikasl L, Kornowski A, Su D S, Eychmuller A, Weller H. Synthesis and characterization of thiol-stabilized CdTe nanocrystals [J]. Ber Bunsen-Ges Phys Chem, 1996, 100(11): 1772−1778.

DOI: 10.1002/bbpc.19961001104

Google Scholar

[14] Yu W W, Wang Y A, Peng X G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals [J]. Chem Mater, 2003, 15(22): 4300−4308.

DOI: 10.1021/cm034729t

Google Scholar

[15] Guo Jia, Yang Wu li, Wang Chang chun. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. J Phys Chem B, 109(37): 17467−17473.

DOI: 10.1021/jp044770z

Google Scholar

[16] Mandal A, Tamai N. Influence of acid on luminescence properties of thioglycolic acid-capped CdTe quantum dots [J]. J Phys Chem C, 2008, 112(22): 8244−8250.

DOI: 10.1021/jp801043e

Google Scholar

[17] Wang Q, Kuo Y C, Wang Y W, Shing G, Ruengruglikit C, Huang Q R. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots [J]. J Phys Chem B, 2006, 110(34): 16860−16866.

DOI: 10.1021/jp062279x

Google Scholar

[18] Deng Da wei, Qin Yuan-bin, Yang Xi, Yu Jun-sheng, Pan Yi. The selective synthesis of water-soluble highly luminescent CdTe nanoparticles and nanorods: The influence of the precursor Cd/Te molar ratio [J]. J Cryst Growth, 2006, 296(2): 141−149.

DOI: 10.1016/j.jcrysgro.2006.08.041

Google Scholar