Relaxed Parallel Modulus-Based Matrix Multisplitting Iterative Methods for Linear Complementarity Problem

Article Preview

Abstract:

In this paper, the authors establish a class of relaxed parallel modulus-based matrix multisplitting iteration methods for large sparse linear complementarity problems, based on the multisplittings of the coefficient matrix. And then, they prove their convergence when the system matrices are H-matrix with positive diagonal elements. These results naturally present convergence conditions for the symmetric positive definite matrices and the M-matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. Cottle , J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, San Diedo,1992.

Google Scholar

[2] Z.Z. Bai and T.Z. Huang, Accelerated overrelaxation methods for solving linear complementar- ity problem. J.UEST China 23,428-432(1994).

Google Scholar

[3] B.-X. Duan , C.-L. Li , A.-N. Xu,Relaxed parallel multisplitting iterative algorithm for linear complementarity problems, OR Transactions, 10(3)77-84.(2006).

Google Scholar

[4] N. Machida, M. Fukushima, T. Ibaraki, A multisplitting method for symmetric linear complementarity problems. J. Comput. Appl. Math.62 217-227(1995).

DOI: 10.1016/0377-0427(94)00103-2

Google Scholar

[5] Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems.Numer. Linear Algebra Appl.

DOI: 10.1002/nla.680

Google Scholar

[6] J.-L. Dong, M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009).

DOI: 10.1002/nla.609

Google Scholar

[7] A. Frommer and D. B. Szyld, H-splitting and two-stage iterative methods, Numer. Numer. Math., 63 (1992), 345-356.

DOI: 10.1007/bf01385865

Google Scholar

[8] A. Frommer , G. Mayer, Convergence of Relaxed Parallel Multisplitting Methods. Linear Algebra and Its Applications, 119:141-152(1989).

DOI: 10.1016/0024-3795(89)90074-8

Google Scholar

[9] Z.-Z. Bai, D.-R. Wang, Generalized matrix multisplitting relaxation methods and their convergence.Numer. Math. J. Chinese Univ. 2, 87–100 (1993).

Google Scholar

[10] Z.-Z. Bai, On the monotone convergence of the projected iteration methods for linear complementarity problems. Numer. Math. J. Chinese Univ. 5, 228–233 (1996).

Google Scholar