[1]
R.W. Cottle , J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, San Diedo,1992.
Google Scholar
[2]
Z.Z. Bai and T.Z. Huang, Accelerated overrelaxation methods for solving linear complementar- ity problem. J.UEST China 23,428-432(1994).
Google Scholar
[3]
B.-X. Duan , C.-L. Li , A.-N. Xu,Relaxed parallel multisplitting iterative algorithm for linear complementarity problems, OR Transactions, 10(3)77-84.(2006).
Google Scholar
[4]
N. Machida, M. Fukushima, T. Ibaraki, A multisplitting method for symmetric linear complementarity problems. J. Comput. Appl. Math.62 217-227(1995).
DOI: 10.1016/0377-0427(94)00103-2
Google Scholar
[5]
Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems.Numer. Linear Algebra Appl.
DOI: 10.1002/nla.680
Google Scholar
[6]
J.-L. Dong, M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009).
DOI: 10.1002/nla.609
Google Scholar
[7]
A. Frommer and D. B. Szyld, H-splitting and two-stage iterative methods, Numer. Numer. Math., 63 (1992), 345-356.
DOI: 10.1007/bf01385865
Google Scholar
[8]
A. Frommer , G. Mayer, Convergence of Relaxed Parallel Multisplitting Methods. Linear Algebra and Its Applications, 119:141-152(1989).
DOI: 10.1016/0024-3795(89)90074-8
Google Scholar
[9]
Z.-Z. Bai, D.-R. Wang, Generalized matrix multisplitting relaxation methods and their convergence.Numer. Math. J. Chinese Univ. 2, 87–100 (1993).
Google Scholar
[10]
Z.-Z. Bai, On the monotone convergence of the projected iteration methods for linear complementarity problems. Numer. Math. J. Chinese Univ. 5, 228–233 (1996).
Google Scholar