A Theoretical Study on the Vibrational Spectra and Thermodynamic Properties for the Derivatives of HNS with –CH3, –N3, and –NF2 Groups

Article Preview

Abstract:

The derivatives of HNS are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/ 6-31G* level. Their IR spectra are obtained and assigned by vibrational analysis. Compared with the experimental results, all the calculated IR data are found to be reliable. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties are evaluated, which are respectively linearly related with the number of methyl, azido and difluoramino groups as well as the temperature, obviously showing good group additivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-208

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. G. Ship: J. Org. Chem Vol. 29 (1964), p.2620.

Google Scholar

[2] K. Michael, I. J. Dagley and D. J. Whelan: J. Phys. Chem Vol. 96 (1992), p.8001.

Google Scholar

[3] M. Lu: Acta Armamentrii Vol. 2 (1994), p.46.

Google Scholar

[4] J.S. Lee, C.K. Hsu and C.L. Chang: Thermochimica Acta Vol.392 (2002), p.173.

Google Scholar

[5] Z.Q. Chen, X.H. Zheng, Z.R. Liu, Q. Pan and Y. Wang: Chin. J. Energ. Mater. Vol.13 (2005), p.249.

Google Scholar

[6] J. H. Zhou, Y. Chi, X.F. Wang, J.S. Li and Y.X. Shen: Chin. J. Explos. & Propel. Vol.29 (2006), p.38.

Google Scholar

[7] H.M. Xiao: The Molecular Orbital Theory of Nitro Compounds, National Defence Industry Press, Beijing, People's Republic of China, 1993.

Google Scholar

[8] G.X. Wang, C.H. Shi, X.D. Gong, and H.M. Xiao: J. Phys.Chem. A Vol.113 (2009), p.1318.

Google Scholar

[9] G.X. Wang, C.H. Shi, X.D. Gong and H. M. Xiao: Chin. J. Chem. Vol.27 (2009), p.687.

Google Scholar

[10] Information on http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (SDBS No.: 60630).

Google Scholar

[11] Z.X. Chen, J.M. Xiao, H.M. Xiao and Y.N. Chiu: J. Phys. Chem. A. Vol.103 (1999), p.8062.

Google Scholar

[12] G.X. Wang, X.D. Gong, H.C. Du, Y. Liu and H.M. Xiao: J. Phys. Chem. A. Vol. 115 (2011), p.795.

Google Scholar

[13] C. Lee, W. Yang and R.G. Parr Phys. Rev. B. Vol.37 (1988), p.785.

Google Scholar

[14] A. D. Becke: J. Chem. Phys. Vol.97 (1992), p.9173.

Google Scholar

[15] P. C. Hariharan and J.A. Pople: Theor. Chim. Acta. Vol.28(1973), p.213.

Google Scholar

[16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J., Hasegawa M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P. Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A. D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J. A Pople:Gaussian 03,Gaussian, Inc., Pittsburgh PA, 2003.

Google Scholar

[17] A.P. Scott and L. Radom: J. Phys. Chem. Vol.100 (1996), p.16502.

Google Scholar

[18] T.L. Hill:Introduction to Statistic Thermodynamics Addison-Wesley, New York,1960.

Google Scholar