An Identity on Resistance Distances

Article Preview

Abstract:

On the basis of electrical network theory, Klein and Randić [Journal of Mathematical Chemistry 12 (1993) 81-9 proposed the novel concept of resistance distance. They view a graph as an (resistive) electrical network by considering each edge of the graph as a unit resistor. Then the resistance distance between any two vertices is defined as the effective resistance between these two nodes in the corresponding electrical network. In the present work, an interesting identity on resistance distances is obtained, that is, the sum of the resistance distance between end-vertices of an edge e of a plane graph G and the resistance distance between end-vertices of the dual edge e* of e in the dual graph G* of G is equal to one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1024-1027

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D .J. Klein and M. Randić: J. Math. Chem. Vol. 10, (1993), p.81.

Google Scholar

[2] P.G. Doyle and J.L. Snell: Random Walks and Electric Networks (The Mathematical Association of America, Washington, DC 1984).

Google Scholar

[3] B. van der Pol, in: Probability and Related Topics in Physical Sciences edited by M. Kac, Interscience, London (1959).

Google Scholar

[4] S. Redner: A Guide to First-Passage Processes (Cambridge University Press, Cambridge 2001 ).

Google Scholar

[5] S. Katsura, T. Morita, S. Inawashiro, T. Horiguchi and Y. Abe : J. Math. Phys. Vol. 12 (1971), p.892.

Google Scholar

[6] L.W. Shapiro: Math. Mag. Vol. 60 (1987), p.36.

Google Scholar

[7] H.Y. Zhu, D.J. Klein and I. Lukovits: J. Chem. Inf. Comput. Sci. Vol. 36 (1996), p.420.

Google Scholar

[8] I. Gutman and B. Mohar: J. Chem. Inf. Comput. Sci. Vol. 36 (1996), p.982.

Google Scholar

[9] D.J. Klein: MATCH Vol. 35 (1997), p.7.

Google Scholar

[10] D. J Klein and O. Ivanciuc: J. Math. Chem. Vol. 30 (2001), p.271.

Google Scholar

[12] D.J. Klein: Croat. Chem. Acta. Vol. 75 (2002), p.633.

Google Scholar

[13] W.J. Xiao and I. Gutman: MATCH Vol. 49 (2003), p.67.

Google Scholar

[14] F.Y. Wu: J. Phys. A: Math. Gen. Vol. 37 (2004), p.6653.

Google Scholar

[15] M.A. Jafarizadeh, R. Sufiani and S. Jafarizadeh: J. Phys. A: Math. Theor. Vol. 40 (2007), p.4949.

DOI: 10.1088/1751-8113/40/19/002

Google Scholar

[16] M.A. Jafarizadeh, R. Sufiani and S. Jafarizadeh: J. Math. Phys. Vol. 50(2) (2009), p.023302.

Google Scholar

[17] H. Zhang and Y. Yang: Int. J. Quantum Chem. Vol. 107 (2007) p.330.

Google Scholar

[18] Y. Yang and H. Zhang: J Phys A: Math. Theor. Vol. 41 (2008), p.445203.

Google Scholar

[19] Y. Yang: Digest J. Nanomat. Biostruct. Vol. 7(2) (2012), p.593.

Google Scholar

[20] H. Chen and F. Zhang: Discrete Appl. Math. Vol. 155 (2007), p.654.

Google Scholar

[21] H. Chen and F. Zhang: J. Math. Chem. Vol. 44 (2008), p.405.

Google Scholar

[22] B. Zhou and N. Trinajestić: Chem. Phys. Lett. Vol. 445 (2008), p.120.

Google Scholar

[23] B. Zhou and N. Trinajestić: J. Math. Chem. Vol. 46 (2009), p.283.

Google Scholar

[24] S. Jafarizadeh, R. Sufiani and M.A. Jafarizadeh: J. Stat. Phys. Vol. 139 (2010), p.177.

Google Scholar

[25] X. Gao, Y. Luo and W. Liu: Discrete Appl. Math. Vol. 159(17) (2011), p. (2050).

Google Scholar